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Abstract—Seismic imaging is an exploration method for esti-
mating the seismic characteristics of the earth’s sub-surface for
geologists and geophysicists. Reverse time migration (RTM) is
a critical method in seismic imaging analysis. It can produce
huge volumes of data that need to be stored for later use during
its execution. The traditional solution transfers the vast amount
of data to peripheral devices and loads them back to memory
whenever needed, which may cause a substantial burden to
I/O and storage space. As such, an efficient data compressor
turns out to be a very critical solution. In order to get the
best overall RTM analysis performance, we develop a novel
hybrid lossy compression method (called HyZ), which is not
only fairly fast in both compression and decompression but also
has a good compression ratio with satisfactory reconstructed
data quality for post hoc analysis. We evaluate several state-of-
the-art error-controlled lossy compression algorithms (including
HyZ, BR, SZx, SZ, SZ-Interp, ZFP, etc.) in a supercomputer.
Experiments show that HyZ not only significantly improves the
overall performance for RTM by 6.29∼6.60× but also obtains
fairly good qualities for both RTM single snapshots and the final
stacking image.

Keywords—Lossy Compression, Performance, Seismic Imag-
ing, Reverse Time Migration

I. INTRODUCTION

Seismic imaging is an exploration method used to estimate
the seismic characteristics of the earth’s sub-surface by mea-
suring the reflected acoustic energy waves. This technology
has been broadly used to explore the sub-surface structure of
rock formations for geologists and geophysicists or used to
explore mineral, coal, gas, and oil for fuel companies. Reverse
time migration (RTM) is a cutting-edge seismic imaging
method, which has been widely used in the seismic imaging
community.

The parallel RTM code, however, suffers from an extremely
large amount of data to process, which turns out to be the
major concern for seismic imagining analysis. Specifically,
RTM involves two critical stages – a forward propagation of
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the source wavefield and a backward propagation of the re-
ceiver wavefield. During the forward propagation, RTM would
generate thousands of 3D snapshots, which occupy extremely
large volumes of data and need to be maintained for later
access by the RTM. According to [1], for instance, an aperture
of 10x10 km and a maximum depth of 8 km may project up to
2,800 terabytes of the data to process for only one shot with
6k snapshots if the maximum frequency is 80 Hz, migration
time is set to 6 seconds, and minimum velocity is 1500m/s.
During the backward propagation, the 3D snapshots produced
by the forward propagation need to be retrieved and processed
to generate a stacking image, which is a final analytic result to
reveal the structural information of the sub-surface. With the
development of parallel programming models (e.g. OpenMP
and MPI) and GPU implementation supports (CUDA), the
computation costs of RTM are significantly reduced. However,
how to efficiently process such a large volume of 3D snapshot
data remains a critical challenge.

To address the above-mentioned big data issue, a straight-
forward solution is transferring the snapshots from memory
to peripheral devices temporarily and loading them back to
memory upon usage, which however still faces some serious
issues or challenges. On the one hand, using the peripheral
device to store a vast amount of runtime data may degrade the
overall execution performance because of the expensive data
transferring cost inevitably. On the other hand, the capacity of
the peripheral device may still be not enough, in the consid-
eration of the extremely large amount of data to be produced
during the forward propagation. For the CPU environment,
for example, the peripheral device could be a parallel file
system (PFS), which projects only tens or hundreds of TBs
for a regular user on a supercomputer [2].

Another potential solution is compressing the RTM snapshot
data to mitigate data transfer costs and storage burden. Specif-
ically, the snapshots produced by the forward propagation
are compressed by a data compressor, and the compressed
snapshots would be kept in either memory or peripheral
devices. Later on, the compressed snapshots will be loaded
and decompressed for the backward propagation analysis at



runtime. As revealed by many existing studies [3]–[5], loss-
less compression suffers from very low compression ratios
(1.2∼2 in general) for scientific datasets. Thus we focus on
error-controlled lossy compression in our work, to achieve
both a high compression ratio and user-accepted introduced
errors. In order to prevent the RTM execution from being
delayed significantly by compression/decompression overhead,
the qualified compressor must offer very high compression and
decompression throughput. This is because the RTM method
generally has quite high performance in its execution [6]
due to substantially optimized parallel code. To the best of
our knowledge, this is the very first work to integrate lossy
compression into the RTM execution framework.

In this paper, we explore the best lossy compression solution
that has high speed in both compression and decompression
while preserving a good compression quality (high compres-
sion ratio and high fidelity of data), so that the overall RTM
execution can be improved significantly without any loss
of analysis quality. The key contributions in this work are
summarized as follows:

• We develop a lossy compression-based RTM framework
for seismic imaging analysis by integrating data com-
pression and decompression into forward and backward
propagation respectively, to deal with the vast amount of
data produced during the RTM execution more efficiently.

• We propose a novel lossy compression method – called
HyZ which combines two high-speed lossy compression
algorithms. The first one is our proposed block-wise
regression-based compressor (BR), and the other one is
ultra-fast prediction-based compressor SZx [7].

• We integrated different lossy compressors (including
HyZ, BR, SZx, SZ, ZFP, SZ-Interp, etc.) into an industrial
RTM code and run it with thousands of snapshots on a
supercomputer.

• We comprehensively investigate the quality for each of
the lossy compressors and their impact to RTM execution
results as well as overall performance. Results show that
our proposed hybrid compressor HyZ has the best visual-
ization quality in class, also leading to good compression
ratios (5+) for users. In overall RTM execution, HyZ
outperforms the second-tier lossy compressors (SZ, ZFP,
etc.) by up to 2.23× and outperforms execution without
lossy compressor by 6.29-6.60×.

The rest of the paper is organized as follows. In Section II,
we discuss the related work. In Section III, we formulate the
research problem. In Section IV, we first analyze an existing
ultra-fast prediction-based lossy compression algorithm SZx
and explain its limitation in the RTM execution, then we
propose the BR compressor along our hybrid solution HyZ. In
Section V, we comprehensively evaluate many state-of-the-art
compressors by running an industry-level parallel RTM code
used in a supercomputer. In Section VI, we conclude the paper
with a discussion of future work.

II. RELATED WORK

In this section, we introduce the related works from two
perspectives: existing solutions to resolve the big snapshot data
issue in RTM and existing lossy compression algorithms that
have been developed and used widely.

A. Resolving the Limited Memory Capacity Issue in RTM

The RTM simulation is facing a serious memory burden in
practice due to terabytes of snapshot data being generated dur-
ing forward propagation. To overcome this bottleneck, several
solutions from different perspectives have been proposed. Fu
et al. [8] adopted an FPGA-based solution to remove memory
constraints and provide a high performance. Perrone et al. [9]
designed a domain-specific data partition strategy to parallel
RTM execution on main memory of different nodes and thus
avoid the low I/O bandwidth of disk. AlOnazi et al. [10]
addressed this issue by deploying executions on distributed-
memory systems equipped with multiple GPUs. Alturkestani
et al. [11] leveraged the GPU’s High Bandwidth Memory
(HBM) as an additional storage media layer to maximize
RTM I/O Bandwidth. Although these existing methods achieve
promising performance in RTM, the high storage requirement
is not mitigated at all, as the size of generated image data
remains the same. Several works [8], [9] have explored the
possibility of using data compression techniques to trade for
the I/O bandwidth and storage cost, while they mainly focus
on the lossless compression in their solutions. Many existing
studies [12] showed that lossless compressors [13]–[15] suffer
from very low compression ratios, especially in a comparison
with lossy compressors on scientific datasets.

B. Error-controlled Lossy Compression for Scientific Datasets

Error-controlled lossy compression is a very promising
solution to resolve the big data issue in RTM execution. The
most important advantage of lossy compression is a signifi-
cantly higher compression ratio than lossless compression, as
demonstrated in prior studies [16], [17]. The existing state-of-
the-art lossy compressors include SZ [16], [17], ZFP [18],
FPZIP [19], TTHRESH [20], MGARD [21], bit grooming
[22], digit rounding [23], and several emerging auto-encoder-
based compressors [24]–[26].

In the scientific data lossy compression community, SZ
and ZFP are two leading compressors, because of their fairly
high compression ratios and high compression speed compared
with other state-of-the-art. According to [16], SZ and ZFP
have much higher compression ratios than FPZIP because
of their innovative algorithms in data prediction and decor-
relation. Based on the SZ compression framework, Zhao et
al. [5] developed a very effective prediction method that can
significantly improve the compression ratio on RTM analysis
datasets. However, its speed is comparable or even lower than
that of the generic SZ compressor, which does not meet the
high-speed requirement in our use case. Although TTHRESH
can get much higher compression ratios than SZ and ZFP
do, it suffers from very low compression/decompression per-
formance (about one order of magnitude lower) due to its



expensive high-order singular value decomposition (HOSVD).
Bitgrooming and digitrounding both suffer from very low com-
pression ratios because they both ignore the data correlations
in compression. There have been a few auto-encoder-based
lossy compression methods [24]–[26] proposed recently, but
none of them are qualified for RTM executions because of very
low performance in both compression and decompression.
Specifically, Liu et al. [26] proposed an effective method to
combine the auto-encoder and SZ compression framework
which exhibits the best compression quality from among all
auto-encoder-based compressors, but it is still about 2-3×
slower than SZ and ZFP.

III. SYSTEM DESIGN AND PROBLEM FORMULATION

In this section, we describe our designed RTM method in-
tegrated with error-controlled lossy compression technologies,
and also formulate the research problem.

A. Design of Lossy-compression based RTM

Figure 1 illustrates the workflow of a parallel RTM exe-
cution, which corresponds to the practical seismic imaging
analysis. Specifically, at the beginning of each run, the RTM
execution is triggered based on the input information which
contains several key parameters such as problem size, initial
background data file, total number of snapshots, and how many
time steps a snapshot will be saved for backward propagation
analysis. The forward propagation of source wavefield gen-
erates a snapshot at each time step; while only a subset of
the snapshots (e.g., every K time steps) are selected/kept for
the later analysis (see step 1 in Figure 1) and others are
disregarded. In the traditional design, the selected snapshots
are kept either in memory (if memory capacity is large enough)
or dumped to external devices temporally. After the forward
propagation, the user will perform a backward propagation of
the receiver wavefield for the analysis of sub-surface structure,
which depends on the snapshots generated by the forward
propagation. As such, the snapshots saved previously during
the forward propagation need to be retrieved for the imaging
analysis (see step 2 in Figure 1). A final stacking image (as
the analysis result) would be generated after the backward
propagation (see step 3 in Figure 1).

Preprocessing

propagation
Forward 

propagation
Backward

Final stacking image

Input data and configuration: 

velocity model, shot gather, etc.

Generate snapshots

Query & Retrieve 

snapshots

1

2

3

Storage device

M
a
in

ta
in

in
g

 a
 l
a

rg
e

 

n
u
m

b
e

r 
o

f 
3
D

 s
n

a
p
s
h
o

ts

R
T

M
 i
m

a
g

in
g

 w
o
rk

fl
o
w

Fig. 1. Illustrating of the big data issue in Reverse Time Migration (RTM)

Through an in-depth investigation of RTM execution work-
flow [27], [28] and diverse error-bounded lossy compressors
[7], [18], [29], we successfully integrated lossy compression
techniques in a scalable parallel industrial RTM code. Specifi-
cally, unlike the traditional code which keeps the original raw
snapshots either in memory or external devices such as parallel
file systems (PFS), our design compresses the snapshots by
a lossy compression method before saving them. During the
backward propagation stage, whenever a snapshot needs to be
used, the corresponding compressed data is queried and loaded
into the memory, and decompressed for the imaging work.

B. Problem Formulation

Our objective is to optimize the overall end-to-end execution
performance of the RTM execution, covering the cost of
preprocessing, forward propagation, and backward propaga-
tion as well as all possible overheads such as compression
time and I/O cost. The fundamental idea is to leverage lossy
compression to reduce the volume of forward propagation
snapshot data, which thus can significantly reduce I/O cost
for the overall execution.

Although lossy compression can obtain significantly higher
compression ratios than lossless compression, it may introduce
data distortion to the reconstructed data, thus we need to
control the compression errors carefully, especially from the
perspective of the post hoc seismic analysis. As for the com-
pression quality, we will focus on both the compression ratio
and the quality of the reconstructed data. On the one hand, we
use commonly-used lossy compression-related metrics such
as peak signal-to-noise ratio (PSNR) and structural similarity
index measure (SSIM) to check the data distortion from the
perspective of lossy compression. On the other hand, with
the involvement of seismic researchers from industry, we also
evaluate the visual quality of the reconstructed data as Seismic
imaging analysts often need to analyze the waves by observing
the snapshots and stacking images [27], [28].

IV. HYZ: A HIGH-SPEED HIGH-FIDELITY LOSSY
COMPRESSION METHOD FOR RTM

In this section, we propose a novel high-speed high-fidelity
lossy compression method (called HyZ), which can also main-
tain a satisfactory compression ratio, for RTM execution and
post hoc analysis.

Since RTM method generally has a relatively high par-
allel performance in seismic imaging analysis, a qualified
lossy compressor has to be fast enough and also with good
compression ratios. To this end, we first analyze an existing
ultra-fast lossy compression algorithm (called SZx [7]) and
explain its limitations in RTM execution. We observe that SZx
cannot maintain high-fidelity in reconstructing single snapshot
images within a satisfactory compression ratio (5+). To solve
this issue, we then develop a high-speed regression-based
lossy compressor (BR) that can preserve the quality of the
snapshot data very well. Finally, to enable error-control in BR
compressor, we propose our hybrid compressor design – HyZ,



which integrates SZx to compress blocks that exceed the error
bound in BR compressor during RTM execution.

A. Discussing the Limitations of SZx
One ultra-fast lossy compressor that is potentially suitable

for RTM execution is SZx, which was proposed by Yu et
al. [7]. The design guideline of SZx is making the com-
pressor composed of fairly lightweight operations including
only bitwise, addition, and subtraction. By comparison, other
state-of-the-art lossy compressors depend on relatively heavier
operations such as multiplication (used by SZ, ZFP), variable-
length encoding (adopted by SZ, ZFP, MGARD, digit round-
ing, and bit grooming), and dictionary encoding (adopted by
SZ, MGARD, digit rounding, and bit grooming).
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Fig. 2. Compression pipeline (workflow) of SZx

The SZx algorithm splits the whole dataset into many
small 1D fixed-size segments (or blocks), and then performs
compression on each block separately. It consists of two
critical stages to process different data points in the dataset:
1 block-wise filtering, 2 compressing non-constant blocks,
as illustrated in Figure 2.

Block-wise filtering aims to check each block to see if it can
be represented by some constant number µ. Specifically, if the
amplitude of the data variation in one block is lower than or
equal to twice of the user-specified error bound, the data in this
block can be approximated by µ=(max−min)/2, where min
and max refer to the minimal value and maximum value in the
corresponding data block, respectively. Such blocks are called
‘constant blocks’; otherwise, they are ‘non-constant blocks’.
As such, the block-wise filtering step requires a preprocessing
step to compute the middle value µ for each block (shown as
step 0 in Figure 2). After finishing the block-wise filtering
step, there will be two outputs committed to the compressed
data: the µ array and the block-type array, which record the
middle values and block types, respectively.

Such a block-wise filtering method can significantly im-
prove the compression ratio, however, it may reduce the
visualization quality for RTM snapshot data. The constant
blocks can be reconstructed only based on the µ array and the
RTM snapshot data is routinely very smooth in space so that
majority of the data belong to the constant blocks. Though
such a design can improve compression ratio in RTM data,
indiscriminately using the same µ to represent the whole block
is likely to cause visible artifacts.

To verify such a situation, Figure 3 visualizes the recon-
structed single snapshot (time step=3000) produced by SZx.

(a) Original Data

Distorted Patterns

(b) SZx Reconstructed Data

Fig. 3. Visualization of single snapshot image (time step=3000) by SZx with
REL=1E-2 error bound (∼5 compression ratio) and 128 block size choice.
Human-visible artifacts in (b) are highlighted.

We set the error bound as REL=1E-2 (c.f. Section V-A4) to
keep the compression ratio at around 5, which is the minimal
satisfactory ratio in RTM execution. As shown in Figure 3 (b),
a large area of distorted patterns can be observed. Because
of the compression algorithm design for ‘constant blocks’ in
SZx, the distorted patterns are also distributed continuously.
Also, the PSNR and SSIM are only 54.95dB and 0.7244,
respectively. Improving visualization quality requires a smaller
error bound such as REL=1E-3 or a smaller block size choice
such as 32, which will also cause a lower compression ratio
and cannot satisfy the seismic community. In conclusion,
the ultra-fast design of SZx is suitable in speed for RTM
execution, however, it has some defects with respect to data
visualization.

B. Block-wise Regression-based Lossy Compression (BR)

The key idea is splitting the entire dataset into many small
blocks (e.g., 4×4×4) and then approximating the data values
in each block by a regression hyperplane. This idea is moti-
vated by an important observation that the data points in a very
small region in space are likely able to be approximated by
a simple hyperplane (e.g., linear regression). We demonstrate
three examples in Figure 4: block A , block B , and block
C . Because values are continuous between adjacent data
points, their colors also exhibit similarly, hence showing their
linear hyperplane properties. Such observations are verified
on almost all RTM snapshots by checking slopes between
adjacent data points.

In our design, to achieve fast compression/decompression
speed and high compression ratio, we explore linear regression
in our proposed block-wise regression (BR) method, as de-
scribed below. During the compression phase, each data block
is approximated by a linear hyperplane with four coefficients,
which can be found as β0 to β3 in Formula 1.

f(x, y, z) = β1x+ β2y + β3z + β0 (1)

where x, y, and z denots the relative location (or index)
of in the data block. That is, x = {0, 1, · · · , n1}, y =
{0, 1, · · · , n2}, z = {0, 1, · · · , n3}, for the data block
n3×n2×n1. Thus, only four coefficient values need to be



A B C

Fig. 4. Illustration of Linearity of Small Data Blocks in An RTM Snapshot

stored to substitute all the data in one block, no matter what
size of the block is (e.g. 3× 3× 3 or 4× 4× 4). During the
decompression, each data block would be recovered by the
hyperplane reconstructed with the four regression coefficients
(i.e. Formula 1). Without loss of generality, again suppose the
data block size is n3×n2×n1, then its regression coefficients
can be calculated as the following formula (dijk refers to the
data values in the data block at the location {i,j,k}).


β1 = 6

n1n2n3(n1+1) (
2Vx

n1−1 − V0)

β2 = 6
n1n2n3(n2+1) (

2Vy

n2−1 − V0)

β3 = 6
n1n2n3(n3+1) (

2Vz

n3−1 − V0)

β0 = V0

n1n2n3
− (n1−1

2 β1 +
n2−1

2 β2 +
n3−1

2 β3)

(2)

where

V0 =

n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0

dijk, Vx =

n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0

i ∗ dijk,

Vy =

n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0

j ∗ dijk, Vz =

n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0

k ∗ dijk.

In this compression method, all computations are linear and
their required data are independent. Thus, these computations
can be highly parallelized, guaranteeing the compression and
decompression speeds with multi-thread designs. Because of
the nature of linear properties on RTM snapshot data, linear
regression also can preserve a high fidelity for reconstructed
data, which will be evaluated in Section V. In addition, the
compression ratio can be estimated based on the following
formula. For instance, when the block size is 4×4×4, the
compression ratio is 64/4=16; when the block size is 3×3×3,
the compression ratio is 27/4=6.75. Note that though a greater
block size leads to a higher compression ratio, it can reduce
the reconstructed data fidelity in turn, since it maintains the
same number of coefficients on more data points.

CR =
n3n2n1

4
(3)

1) Discussion 1: High-Order Regressions: Besides our
linear regression design, there are also other high-order re-
gression methods. We use quadratic (i.e. 2nd-order) regression
here for example, and similar conclusions can be drawn on
other high-order regressions (i.e. cubic or 3rd-order regression)
as well. Quadratic regression approximates each block via
a quadratic hyperplane with 10 coefficients. Compared with
linear regression, quadratic regression maintains more coeffi-
cients and thus can predict data points more accurately. The
formula can be found below.

f(x, y, z) = β0 + β1x+ β2y + β3z + β4x
2 + β5xy

+β6xz + β7y
2 + β8yz + β9z

2 (4)

Similar to linear regression, the quadratic regression based
compression needs to store 10 coefficients in each block,
which will be used to reconstruct data during the decom-
pression. Using the least-square method, the 10 regression
coefficients can be calculated as the Equation (5).

β =

n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0

A

−1

V T (5)

where

A =



1 x y z x2 xy xz y2 yz z2

x x2 xy xz x3 x2y x2z xy2 xyz xz2

y xy y2 yz x2y xy2 xyz y3 y2z yz2

z xz yz z2 x2z xyz xz2 y2z yz2 z3

x2 x3 x2y x2z x4 x3y x3z x2y2 x2yz x2z2

xy x2y xy2 xyz x3y x2y2 x2yz xy3 xy2z xyz2

xz x2z xyz xz2 x3z x2yz x2z2 xy2z xyz2 xz3

y2 xy2 y3 y2z x2y2 xy3 xy2z y4 y3z y2z2

yz xyz y2z yz2 x2yz xy2z xyz2 y3z y2z2 yz3

z2 xz2 yz2 z3 x2z2 xyz2 xz3 y2z2 yz3 z4



V = (V1, V2, .., V9), Vt =

n1−1∑
x=0

n2−1∑
y=0

n3−1∑
z=0

gxyz(t) ∗ fxyz, 0 ≤ t ≤ 9

gx,y,z(t) returns tth element from list [1, x, y, z, x2, xy, xz, y2, yz, z2]

In this method, the compression ratio can be calculated as
follows, as there are 10 coefficients to store per block.

CR =
n3n2n1

10
(6)

High-order regression methods may preserve good recon-
structed image quality in some circumstances since they
store more coefficients within the same block (i.e. the same
number of data points). Moreover, more coefficients inside
the same block can lead to a lower compression ratio. Given
a 3×3×3 block size, for example, linear regression can achieve
a 27/4 = 6.75 compression ratio, while quadratic regression
has a compression ratio of 27/10 = 2.7, which cannot satisfy
the RTM execution (5+). In addition, higher-order regression
methods require more complex computations while obtaining
the coefficients in the compression stage, which significantly
reduces the compression speeds in RTM. Therefore, we only
consider linear regression in this work.



2) Discussion 2: Other Regression-based Compressors:
Besides our BR solution, polynomial regressions (e.g. lin-
ear/quadratic regression) have also been adopted in several
existing lossy compression techniques [30], [31]. However,
our solution substantially differs from the prior works, due
to a lightweight design for RTM execution. SZ2.1 [29]
leverages linear regression to predict the data values in the
high-compression cases [30]. Zhao et al. [31] integrates the
quadratic regression into the prediction stage of the SZ
compression framework, which can significantly improve the
compression quality for some wave-patterned datasets. These
related works both treat the regression method as a predictor
in the entire compression pipeline. In order to keep a very
high compression ratio, they have to compress the coefficients,
which may degrade the accuracy of the regression/prediction in
turn. As such, they have to operate a few other expensive com-
pression steps (such as quantization, variable-length encoding,
and dictionary encoding) to control the compression errors. By
comparison, our solution can skip the three expensive com-
pression steps in that we store the regression coefficients as
they are in the compressed data. Such a lightweight algorithm
has substantially higher compression/decompression speeds,
while still preserving the reconstruction quality very well
because of the nature of linear properties in RTM snapshot
data (to be shown later).

C. HyZ: Combining BR and SZx for RTM Execution

In this subsection, we describe how we construct a hybrid
lossy compression framework HyZ by using two compression
methods (BR and SZx).

As shown in Section IV-B, BR splits RTM snapshot data
into many small blocks and adopts a regression hyperplane to
preserve data value inside each block, which preserves the re-
constructed RTM data quality and a controllable compression
ratio. By only storing the regression coefficients as compressed
data, BR is also ultra-fast and hence is suitable for RTM execu-
tion. However, due to the lightweight design, BR compressor
does not support error-control. For example, we use BR-Linear
with 4×4×4 block size to compress a single RTM snapshot
data (time step=3000). After the reconstruction, we find there
are around less than 1% data points (distributed in 3% blocks)
exceeding the REL 1E-2 error bound. Existing error-control
designs [29], [31] require time-consuming computations (such
as quantization and encoding) that negatively impact the speed
constraint in RTM execution. Thus, to further improve the
reconstructed data quality for RTM, we integrate SZx into BR
compressor and propose HyZ, of which workflow is shown in
Figure 5.

The fundamental design of HyZ is to enable fast error-
control in BR compressors via another ultra-fast compressor
SZx. Specifically, HyZ consists of 3 major steps: 0 BR
compressor, 1 sampling-based block error checking, and 2
SZx compressor. Given a user-specified error bound and the
input raw data, HyZ first utilizes BR compressor (shown as 0
in Figure 5) to process data and obtain the corresponding re-
gression coefficients. In order to check if data points are error-
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error-bounded inside each block

Compress blocks that are not 
error-bounded by SZx

0 1 2

Regression 
coefficients

Record error-
bounded blocks

Compressed 
bytes by SZx

1

0

2

Output data

Compressed Data
0

1

2

Fig. 5. Compression pipeline (workflow) of HyZ

bounded inside each block, HyZ then reverses the regression
coefficients to the decompressed data. Since data comparison
operations are likely to incur extra computation cost, HyZ
samples data from eight corners inside a block (i.e. cube)
to determine if this block is error-bounded (shown as 1 in
Figure 5). By doing so, more than 97% of outlier blocks can be
found across all RTM snapshot data. Though there are still less
than 3% blocks that are not error-bounded, we argue that these
outlier data points only occupy less than 0.1% of the whole
dataset, which in fact has only negligible influence on both
statistic image quality (PSNR and SSIM) and visualization
quality. Finally, for all the recognized blocks that are not error-
bounded, HyZ combines them into an array and adopts SZx
to compress this array (shown as 2 in Figure 5). Note that
although constant block compression methodology in SZx may
cause visible errors on the RTM dataset, such circumstances
only can be observed on consecutive data. However, in this
combined array produced by 1 , the data points are actually
distributed discretely with respect to their position in the
original RTM snapshot, hence not leading to consecutive
visible errors. In all, HyZ combines two ultra-fast compressors,
hence not only can achieve promising visualization results but
also can maintain top-tier compression/decompression speeds.

V. PERFORMANCE EVALUATION

In this section, we present experimental setups and analyze
the performance evaluation results.

A. Experimental Settings

We describe the environment, datasets, and compressors as
follows.

1) Environment: We perform multi-thread OpenMP exper-
iments using Argonne Bebop supercomputer, in which each
node has two Intel Xeon E5-2695 v4 processors and 128 GB
of DRAM. Since each Bebop node is equipped with 36 cores,
we run our experiments with 36 threads for each compressor.

2) RTM Code and Datasets: We perform the evaluation
using an industrial parallel RTM code, which is a production-
level RTM implementation. Specifically, we run the code with
3600 time steps at a fraction of Overthrust Belt seismic data
of which dimension is 449×449×235. That is, there are 3600
snapshots generated to be compressed during the forward
propagation stage and each snapshot contains 449×449×235
single-precision floating-point data points.



3) State-of-the-Art Compressors in Our Evaluation: We
evaluate BR, HyZ, and SZx compressors in RTM execution
with 4 other state-of-the-art lossy compressors (SZ-Interp
[5], SZ-Interp-fast, SZ2.1.12 [29], ZFP0.5.5 [18]). SZ-Interp
adopts an interpolation method in the SZ compression frame-
work, which can significantly improve the compression quality
in turn. SZ-Interp-fast is a modified version of SZ-Interp, by
replacing its expensive steps (Huffman encoding and Zstd)
with a lightweight encoder - run-length encoding [32]. SZ2.1 is
the latest public version of the SZ compressor, which exhibits
fairly high compression quality and performance as validated
by many prior studies [17], [30]. ZFP is another outstanding
error-bounded lossy compressor, which may outperform SZ2.1
in some cases as verified by existing studies [5]. We have
integrated all the lossy compressors into the RTM execution
in our experiments.

We also evaluate the compression ratios of 3 state-of-the-art
lossless compressors – ZFP, FPZIP, and Zstandard (Zstd) for a
comparison. ZFP and FPZIP also support lossless compression
in addition to lossy compression as long as all the bit-planes
are preserved during the compression. Zstd is an outstanding
lossless compressor, which is substantially faster than other
lossless compressors according to prior studies [14], [33].

4) Error Bounds for Lossy Compressors: In lossy compres-
sors with error-control, there are two types of error bounds,
absolute (ABS) error bound and value-range-based relative
(REL) error bound, which are both commonly used in sci-
entific applications [17], [30], [34]. The ABS error bound
(denote as δ) is set as a constant. As for REL error bound,
it is a linear computation based on the global data value
range size, i.e. λr, where λ ∈ (0, 1) and r denote relative
ratio and data range size respectively. As a result, for a
given set of data D = {d1, d2, ..., dn}, its decompressed data
D′ = {d′1, d′2, ..., d′n} should satisfy error bounds by following
equations.

max
i=1,2,...,n

(di − d′i) ≤
{
δ, ABS error bound δ is used.

λr, REL error bound λ is used.
(7)

5) Evaluation Metrics:

• Compression Ratio (CR): CR (defined as original size
compressed size )

indicates how much the snapshot data can be reduced in
memory. The minimum qualified compression ratio for
RTM execution is 5 following the suggestions of seismic
experts. Besides, our execution node has 128GB memory
and the total volume of RTM snapshot data is up to
635GB. And we also avoid the execution crash because
of an out-of-memory issue.

• Compression speed and decompression speed: As men-
tioned, compression/decompression speed is critical to the
overall execution performance, as too high overhead may
cause significant delays unexpectedly. In general, these
two speeds are measured in the form of throughput (i.e.,

original size
compression time (GB/s) and reconstructed size

decompression time (GB/s),
respectively).

• PSNR and SSIM: as mentioned in Section III, they are
used for quantifying data distortion in RTM execution.
Their detailed definitions can be found in [35] and [36].

• Visual quality: We will visualize the data for both
snapshots and stacking image to present the impacts of
different lossy compressors to the results.

• Overall performance of RTM: Entire execution time of
one RTM run that involves four stages: execution kernel
(i.e. RTM algorithm computation), I/O write (including
data compression in forward propagation), I/O read (in-
cluding data decompression in backward propagation),
and stacking image generation.

B. Evaluation Results and Analysis

We present evaluation results and conclusions as follows.

TABLE I
AVERAGE COMPRESSION RATIOS BASED ON THE SAME ERROR BOUND

OVER 3600 SNAPSHOTS IN RTM EXECUTION. (ALL COMPRESSORS ARE
OPENMP VERSIONS EXCEPT FOR SZ (SERIAL))

Compressor Relative Error Bound Absolute Error Bound Average1E-3 4E-4 1E-5 4E-6

SZx 7.58 6.22 9.57 7.72 7.77
SZ-Interp 213.53 116.60 177.92 113.20 155.31
SZ-Interp-fast 17.05 9.09 16.26 11.06 13.37
SZ 26.94 25.51 26.83 24.37 25.91
SZ(Serial) 70.36 50.68 81.47 54.94 64.36
ZFP 26.92 20.65 38.74 32.04 29.59

Compressor Block Size Average
3× 3× 3 4× 4× 4 5× 5× 5 6× 6× 6

BR 6.66 15.72 31.11 52.64 26.53

1) Compression Ratio: Table I presents the average com-
pression ratios of different lossy compressors among 3600
snapshots with the same error bounds. For error-bounded
compressors (such as SZx, SZ and ZFP), we use two types
of error bounds – ABS and REL. Their specific definitions
can be found in Section V-A4. For the non-error-bounded
compressor BR, we present its compression ratios based on
different block sizes. We can clearly observe that all lossy
compressors here meet the compression ratio requirement
(5+) even when we set relatively low error bounds: e.g.,
REL=4E-4 and ABS=4E-6. Specifically, SZ-Interp exhibits
the highest compression ratios (113.2∼213.53), and SZx has
lowest compression ratios (6.22∼9.57). The key reason is
that SZ-Interp fully leveraged the data correlation in 3D
dimensions by a dynamic interpolation method [5], while
SZx is designed based on 1D correlation of the dataset. BR
obtains compression ratios from 6.66 to 52.64. SZ-Interp-fast
has significantly lower compression ratios than SZ-Interp, in
that its run-length encoding is not as effective as Huffman
encoding especially when the error bound is relatively low
(the pattern with consecutive symbols is very rare in this
situation). We notice that SZ has different compression ratios
between its OpenMP and Serial (i.e. single thread) versions,
and the compression ratio in OpenMP version is degraded
by ∼2.5× on average. This is because the OpenMP version



needs to make sure data independence across blocks during
compression, which would lose prediction accuracy inevitably.

TABLE II
AVERAGE COMPRESSION RATIOS OF HYZ BASED ON DIFFERENT ERROR

BOUNDS AND BLOCK SIZE CHOICES OVER 3600 SNAPSHOTS IN RTM
EXECUTION.

HyZ Relative Error Bound Absolute Error Bound Average1E-3 4E-4 1E-5 4E-6

3× 3× 3 5.01 4.61 5.17 4.99

12.314× 4× 4 9.14 8.20 10.29 9.69
5× 5× 5 13.87 12.24 17.10 15.59
6× 6× 6 18.50 16.11 24.84 21.52

Table II presents the compression ratios of HyZ. Since
HyZ has error-control by integrating SZx to BR, it has two
compression settings, block size and error bound. For these
two settings in HyZ, smaller error bounds and block sizes
exhibit lower compression ratios. Such results are similar to
what we have observed in SZx and BR, respectively. The
compression ratio of HyZ is smaller than BR, since it requires
extra space for error-control computation. In all, HyZ has an
average compression ratio of 12.31, which satisfy the RTM
execution.

TABLE III
AVERAGE COMPRESSION RATIOS OF THREE LOSSLESS COMPRESSORS

OVER 3600 SNAPSHOTS IN RTM EXECUTION.

Compressor Zstd FPZIP ZFP

Average CR 1.53 2.17 1.85

Table III shows the compression ratios of the lossless
compressors. The overall compression ratios of Zstd, FPZIP,
and ZFP are in the range of [1.53, 2.17], which is too low
to complete the whole execution because of limited memory
capacity. Moreover, they are all considerably slower than
lossy compressors: the serial versions of FPZIP, ZFP and
Zstd are slower than SZ(serial) by ∼3-5×, ∼5-10×, 10+×,
respectively, which is far less than the expected compression
throughput.

Takeaway 1: HyZ and BR both can meet compression ratio
requirement (5+) in RTM execution across 3600 time steps,
with 12.31 and 26.53 on average.

TABLE IV
OPENMP COMPRESSION SPEEDS (GB/S) BASED ON THE SAME ERROR

BOUND OVER 3600 SNAPSHOTS IN RTM EXECUTION.

Compressor Relative Error Bound Absolute Error Bound Average1E-3 4E-4 1E-5 4E-6

SZx 12.48 11.08 16.00 8.78 12.09
SZ-Interp 2.87 2.76 2.76 2.47 2.72
SZ-Interp-fast 5.48 5.36 5.53 5.11 5.37
SZ 3.63 3.57 3.61 3.57 3.60
ZFP 2.82 2.56 4.33 4.04 3.44

Compressor Block Size Average
3× 3× 3 4× 4× 4 5× 5× 5 6× 6× 6

BR 5.85 15.64 24.36 32.46 19.58

TABLE V
OPENMP DECOMPRESSION SPEEDS (GB/S) BASED ON THE SAME ERROR

BOUND OVER 3600 SNAPSHOTS IN RTM EXECUTION.

Compressor Relative Error Bound Absolute Error Bound Average1E-3 4E-4 1E-5 4E-6

SZx 19.65 18.13 22.45 15.44 18.92
SZ-Interp 5.26 4.88 4.77 4.48 4.85
SZ-Interp-fast 9.00 9.10 9.61 8.03 8.94
SZ 5.14 4.75 5.01 4.76 4.92
ZFP 0.60 0.54 0.62 0.58 0.59

Compressor Block Size Average
3× 3× 3 4× 4× 4 5× 5× 5 6× 6× 6

BR 10.67 19.36 24.96 26.59 20.40

2) Compression and Decompression Speed: Table IV and
Table V present the OpenMP compression and decompression
speeds for different lossy compressors over 3600 snapshots
in RTM execution, respectively. As shown in the tables, the
SZx and our proposed BR significantly outperform other lossy
compressors. In absolute terms, the compression speeds of SZx
and BR reach 12.09GB/s and 23.67GB/s on one node from
Bebop supercomputer, which is about 2∼4× as high as the
state-of-the-art lossy compressors SZ and ZFP. Note that all
lossy compressors except ZFP have a larger throughput in the
decompression stage, and the reason is that decompression
requires fewer computations to reconstruct the data. For ZFP’s
decompression, it does not have OpenMP version, so we can
only run the serial version instead, which suffers very low
speed as shown in the table.

Table VI presents the OpenMP compression and
decompression speeds of HyZ. The average compression and
decompression speeds of HyZ are 10.69GB/s and 12.45GB/s,
which are 45.40% and 38.97% slower than those of BR,
respectively. The key reason is that HyZ introduces sampling-
based block error checking and SZx compression stages to
enable error-control and thus further improve visualization
quality. However, HyZ is still 3∼4× faster than the second
tier compressors such as SZ and ZFP. In all, HyZ achieves
first-class compression and decompression speeds in RTM
execution compared with existing lossy compressors.

Takeaway 2: HyZ and BR both have top-class com-
pression and decompression speeds. HyZ can achieve
10.69GB/s and 12.45GB/s compression and decompression
speeds respectively, while these numbers are 19.58GB/s
and 20.40GB/s in our proposed BR compressor.

3) Data Distortion: We evaluate data distortion on both
single snapshots and final stacking image in RTM execu-
tion. For single snapshot, we use one typical snapshot (time
step=3000) for example, and similar results can be obtained
in other RTM snapshots as well. Following the suggestions
of seismic experts, we choose REL=1E-3 as error bound for
examining the visualization errors in HyZ.

Figure 6 visualizes the reconstructed single snapshot pro-
duced by BR and HyZ. As seen in Figure 6 (b) and (c),
HyZ maintains a better visualization with identical patterns,



TABLE VI
AVERAGE OPENMP COMPRESSION/DECOMPRESSION SPEEDS (GB/S) OF HYZ BASED ON DIFFERENT ERROR BOUNDS AND BLOCK SIZE CHOICES OVER

3600 SNAPSHOTS IN RTM EXECUTION.

HyZ
Compression Speed Decompression Speed

Relative Error Bound Absolute Error Bound Average Relative Error Bound Absolute Error Bound Average1E-3 4E-4 1E-5 4E-6 1E-3 4E-4 1E-5 4E-6

3× 3× 3 4.54 4.28 4.72 4.33

10.69

7.45 7.33 7.65 7.26

12.454× 4× 4 8.45 8.37 8.83 8.34 12.71 12.16 12.94 11.83
5× 5× 5 13.12 11.93 13.42 12.32 14.64 14.43 15.01 13.47
6× 6× 6 17.64 16.41 17.94 16.40 15.85 15.47 16.01 15.03

(a) Original Data

Distorted
Patterns

(b) BR, Block Size=5 × 5 × 5,
(PSNR: 50.86dB, SSIM: 0.9546)

Identical 
Patterns

(c) HyZ, Block Size=5 × 5 ×
5, REL=1E-3 (PSNR: 87.91dB,
SSIM: 0.9980)

Identical 
Patterns
Identical 
Patterns

(d) HyZ, Block Size=6 × 6 ×
6, REL=1E-3 (PSNR: 68.78dB,
SSIM: 0.9861)

Fig. 6. Visualization of single snapshot (time step=3000) image by BR and HyZ (REL=1E-3) compressors.

(a) Original Data

Distorted Patterns

(b) BR, Block Size=4 × 4 × 4,
(PSNR: 74.50dB, SSIM: 0.9713)

Identical Patterns

(c) HyZ, Block Size=4 × 4 × 4,
(PSNR: 124.13dB, SSIM: 0.9935)

Identical Patterns

(d) HyZ, Block Size=5 × 5 × 5,
(PSNR: 117.35dB, SSIM: 0.9902)

Fig. 7. Visualization of stacking image by BR and HyZ (REL=1E-3) compressors.

while the image produced by BR has a few distorted patterns.
Besides, in HyZ reconstructed data, the PSNR and SSIM can
reach up to 87.91dB and 0.9546, which is higher than those
of BR reconstructed data. When we increase the block size of
HyZ from 5×5×5 to 6×6×6 (see Figure 6 (d)), though PSNR
and SSIM are slightly reduced from 87.91dB to 68.78dB and
from 0.9980 to 0.9861, they are still higher than those snapshot
reconstructed by BR compressor. In addition, both 5×5×5 and
6×6×6 in HyZ can preserve identical patterns in visualization.
Because of error-control, HyZ is better at preserving single
snapshot’s data quality.

Figure 7 presents the final stacking image generated by
BR and HyZ. As seen in Figure 7 (b) and (c), HyZ maintains
a better visualization quality than BR under the same block
size choice (4 × 4 × 4). The corresponding PSNR and SSIM
can reach up to 123.13dB and 0.9935, respectively. The same
conclusion can also be drawn when we increase the block size

of HyZ to 5× 5× 5 (see Figure 7 (d)). The key reason HyZ
outperforms BR is that the reconstructed snapshots without
error-control may introduce extra errors. Such extra errors
may only slightly affect the visualization of single snapshot,
but they will stack gradually along with the 3600 time steps
in RTM execution, leading to visible artifacts at last. In all,
HyZ is a better choice for preserving final stacking image.

Takeaway 3: HyZ is superior to BR compressor in pre-
serving the visualization quality for both single snapshots
and the final stacking image, with higher PSNR and SSIM.

4) Overall Performance of RTM: Figure 8 presents the
overall performance of RTM execution by integrating different
lossy compressors. The ‘Disk’ bar means the baseline RTM
execution that offloads uncompressed snapshots to disk. To
clearly present the execution time, we breakdown each RTM
execution into four major stages: (1) Execution Kernel Time:



Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Disk SZxBR
SZ-Interp-fast

SZ-Interp
SZ ZFP

4×
4×

4

5×
5×

5

6×
6×

6

R
EL

=1
E-

3

A
B

S=
1E

-5

R
EL

=1
E-

3

A
B

S=
1E

-5

R
EL

=1
E-

3

A
B

S=
1E

-5

R
EL

=1
E-

3

A
B

S=
1E

-5

R
EL

=1
E-

3

A
B

S=
1E

-5

2990

518 484 493 477
828 611

1269 992

HyZ

410 398 393 396 374 362 371 334

REL=1E-3

4×
4×

4

5×
5×

5

6×
6×

6

Fig. 8. Overall performance of RTM

the core RTM algorithm, (2) I/O Write Time: writing/saving
snapshot data during forward propagation including the com-
pression time, (3) I/O Read Time: loading snapshot data in
the backward propagation phase including the decompression
time, (4) Stacking Image Generating Time: generating the final
stacking image after backward propagation. According to the
figure, running RTM with HyZ can get a top-tier speedup in
class (6.29-6.60×) compared with original execution without
compression techniques, because of high performance of both
SZx and BR. In particular, SZx and BR obtain a speed-up
of 7.49× and 6.93× on average, respectively. All these three
compressors lead to top-tier performance. From among them,
the HyZ is the best choice because it can preserve high data
reconstruction quality for both snapshots and stacking image.

In contrast, the executions with other compressors (SZ,
ZFP, SZ-Interp, etc.) would take notably longer time to finish.
According to the figure, we can clearly observe that their I/O
write times are all considerably higher than that of any top-tier
performance compressor (HyZ, SZx, BR). This is due to the
fact that they all suffer from substantially higher compression
time (see Table IV). It is also observed that the RTM with
ZFP has a much higher time cost compared with other lossy
compressors. The key reason is that ZFP only supports single-
thread in the decompression, which causes significantly longer
total I/O read time in turn.

Note that we measure the performance with a single node
on Bebop supercomputer. In industrial scenario, the RTM
execution can be parallelized with multiple nodes. However,
its strategy of integrating lossy compression is the same. In
each time step of forward propagation, the host node divides
the snapshot data into multiple copies and sends them to
other nodes for later execution. These operations will then
be conducted reversely in backward propagation. As such,
each copy of snapshot data will be compressed/decompressed
in its corresponding node concurrently without dependency,
and hence our conclusion on performance along with other
analyses can remain the same.

Takeaway 4: HyZ and BR both can lead to top-tier per-
formances in RTM execution, increasing the performance
on average by 6.46× and 6.93×, respectively.

VI. CONCLUSION AND FUTURE WORK

In this paper, we develop a hybrid lossy compression
method (HyZ), in order to optimize the overall performance
in RTM execution while preserving the data quality very well
for users. We perform comprehensive experiments based on a
total of 10 state-of-the-art lossless and lossy compressors. The
key findings and results are summarized as below:

• Our solution HyZ combining BR and SZx has the top-
tier performance in both compression and decompression,
with satisfactory compression ratio (5+) and high fidelity
reconstructed data in both snapshots and stacking image.

• BR exhibits the best compression and decompression
speeds, with 19.58GB/s and 20.40GB/s on average.

• HyZ is a better choice for preserving data fidelity for both
single snapshot data and final stacking image.

• HyZ efficiently solves the big data issue in RTM execu-
tion and improves its overall performance from 6.29× to
6.60× over the original workflow execution performance.

In the future, we plan to further improve the RTM execution
performance by exploring more advanced lossy compression
techniques in heterogeneous computation environments.
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