
Characterizing Runtime Performance Variation in
Error Detection by Duplicating Instructions

Yafan Huang†*, Zhengyang He†*, Lingda Li‡, Guanpeng Li†
† University of Iowa, Iowa City, IA, USA

‡ Brookhaven National Laboratory, Upton, NY, USA
yafan-huang@uiowa.edu, zhengyang-he@uiowa.edu, lli@bnl.gov, guanpeng-li@uiowa.edu

Abstract—Soft error rate has been increasing due to the
shrinking size of transistors, leading to an elevated risk of catas-
trophic failures in modern computer systems. Error detection by
duplicating instructions (EDDI) is a software-based technique to
mitigate soft errors with a low runtime performance overhead
and has been widely adopted in many safety- and mission-
critical real-time systems such as space applications. However,
these systems are commonly sensitive to runtime performance
overheads the protection techniques incur. Few studies have
investigated the performance of EDDI across various system
designs and operational parameters, hence lacking a complete
understanding in the literature. In this paper, we conduct com-
prehensive experiments to study the variation of EDDI runtime
performance overhead and characterize the root causes. We find
that there exist significant variations in performance overheads
of EDDI, due to a few architectural and program-level factors.
Based on the findings, we propose two practical techniques
FUZZYB and CELER: FUZZYB uses an input searching technique
to bound EDDI runtime performance overhead across different
inputs for a given program; while CELER reduces EDDI run-
time performance overheads using compiler transformation (by
25.08% reduction).

Keywords—Error Resilience, Instruction Duplication, Program
Analysis, Software Testing, Input Searching

I. INTRODUCTION

Recent advances in hardware design and manufacturing
technology have pushed to smaller transistor sizes, exacer-
bating the susceptibility of modern computer systems to soft
errors [1], [2], [3]. Once a soft error occurs in a hardware
component, it may corrupt the computation value, propagate
in the software execution, and result in failure outcomes,
such as system crashes or silent data corruptions, leading
to severe social and financial catastrophes, thereby must be
mitigated [4], [5], [2], [6], [7].

Error detection by duplicating instructions (EDDI) [8], a
software-based technique, has been proposed to detect soft er-
rors at software level [9], [10], [11], [6], [12]. EDDI duplicates
instructions at compile time and detects mismatch at runtime
if any of the two running copies is corrupted due to errors. The
technique has been widely deployed in real-time systems that
are safety- and mission-critical [13], [14], [15]. For example,
the Stanford ARGOS project, in collaboration with Naval
Research Laboratory (NRL), used EDDI in Low Earth Orbit
systems for their satellites to harden the applications against
strong radiation in outer space environment [14]. On the

* indicates equal contribution.

other hand, these real-time systems have multiple components
working synergistically together [16]. The complex interac-
tions, dependencies, and schedulings between components in
the systems make their executions extremely sensitive to the
runtime performance variations incurred by the additional
protection techniques such as EDDI [17], [18]. Consequently,
any timing violations in the executions due to unexpected
performance variations may result in failures in the operations.
For example, in the famous Therac-25 accidents [19], [20], the
unscheduled subcomponents due to the timing issues result
in injecting radiation doses hundreds of times higher than
the normal level to the cancer patients under radiotherapy,
leading to severe casualties. Unfortunately, existing studies in
dependability primarily focused on the fault detection coverage
perspective of EDDI [21], [22], [11], [23], [6], whereas few
studies have investigated the runtime performance and its
variation, leaving it an open question in the research. In
our experiment, we observe that the same EDDI protection
technique may incur a wide range of performance variations
– from as low as 8% (e.g., FFT2 benchmark) to 203% (e.g.,
LBM benchmark). We find that multiple system parameters,
at both software and hardware levels, play important roles and
affect the performance variations of EDDI in deterministic
ways. Furthermore, we observe that different program inputs
also have a non-negligible impact, leading to a drastic variation
of up to 68% in program executions for the same program and
hardware. These findings are surprising and worrisome as they
indicate that EDDI-protected systems of different designs may
experience significant performance variation in the production
environment where the systems run with arbitrary workloads.

To investigate and understand the runtime performance of
EDDI, we conduct extensive experiments on 22 widely-used
benchmarks and characterize the performance overhead in
these applications. We study more than 20 possibly related
factors at architectural and program levels and analyze their
impacts on performance. We find that the EDDI runtime per-
formance overhead is highly correlated to 6 dominant factors,
such as the use of L1 cache, the dynamic footprints of certain
instruction types, the number of operator types in duplicated
instructions, etc. Based on the characterization, we propose
two techniques1 that address the vital performance issues of
EDDI, FUZZYB and CELER. They can be used to assist system

1Source code: https://github.com/hyfshishen/ISSRE23-FUZZYB-CELER
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designers to develop safe and performal EDDI: (1) FUZZYB:
A framework that efficiently bounds the runtime performance
of EDDI in a given program across different program inputs.
By incorporating the input searching technique, FUZZYB can
locate the worst-case performance overhead in the EDDI-
protected program and ensure meeting the time constraints
of the system. (2) CELER: A novel compiler transformation
technique that improves the EDDI runtime performance based
on the insights gained in our characterization study. CELER
reduces the complexity of program control-flow divergence,
and significantly speeds up the program execution without af-
fecting EDDI fault coverage, improving the time efficiency of
the protection in target systems. To the best of our knowledge,
we are the first ones that comprehensively characterize the
performance of EDDI, and propose practical techniques that
bound and improve the performance of it.

Our contributions are summarized as follows:
• We first measure and report the dramatic performance

variation of EDDI observed from 22 benchmarks. A
number of system design parameters have been studied.
We quantify their relationship with the variation and
identify the dominant ones.

• We propose FUZZYB to identify the upper bound of
EDDI runtime performance overhead across the search
space of program inputs. Our evaluation shows that
FUZZYB can identify the upper bound runtime perfor-
mance overhead in a timely manner, up to a speed-up of
ten-fold compared with a random approach.

• Based on the understanding of the dominant design
factors, we develop CELER, a control-flow optimized
EDDI design, to accelerate the performance of EDDI.
Compared with the original EDDI, the technique reduces
the runtime performance overhead by up to 91%, with an
average of 25.08% reduction.

• We conduct a case study with a real-world space ap-
plication, EEKF, to further demonstrate the effectiveness
of FUZZYB and CELER. The experiment shows that our
techniques are highly efficient and effective in EEKF.

II. ERROR DETECTION BY INSTRUCTION DUPLICATION

EDDI is a compiler-level soft error detection technique and
has been extensively studied during the past two decades [9],
[11], [6], [22], [23], [10]. Since EDDI is a highly flexible
and effective protection technique, it has been used to detect
soft errors in mission-critical computer systems such as space-
craft [15], where even minor errors can have catastrophic con-
sequences. The principle of EDDI can be shown in Figure 1.
EDDI contains two major steps: Identifying synchronization
points (➊) and EDDI code transformation (➋). Given an
instruction sequence, EDDI first identifies the synchronization
point D (➊). A synchronization point in program instruction
lists denotes the end of one data dependency sequence and
is usually represented as store instruction, function calls, or
control-flow branches, etc. EDDI then performs code trans-
formation to place the duplications and the related functional
instructions (➋). For instance, to protect instructions A, B,

and C, EDDI duplicates instructions by inserting A’, B’, and
C’ along with a checker before the synchronization point D
at the compile time. If any faults occur at two independent
data dependency sequences (i.e. two copies), the checker will
compare the computation results between B and B’ and hence
detect the mismatch at runtime.
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Fig. 1. EDDI principle: converting original program to program with EDDI.

Figure 2 shows an example of our EDDI implementation
based on LLVM compiler infrastructure in Mantevo-HPCCG2

application. The EDDI implementation is inline with what
has been described in other recent related work [6], [23],
[10], [11]. We will also use the implementation in the rest
of our study. For simplicity, we refer to the terms instruction
and basic block in this paper as the LLVM intermediate
representation (IR) instruction and basic block, although our
methodology is generic and not tied to LLVM. In Figure 2, the
blue, yellow, and red part denotes the original program instruc-
tions, duplicated instructions, and functional instructions (e.g.
comparison, program exit), respectively. Note that the original
instructions only form one basic block without EDDI. As we
can see, there are two independent data dependency sequences
in the original basic block, ending up with two synchronization
locations (see Lines 15 and 27). So we duplicate those two
sequences separately and then insert two checkers (see Lines
8-9 and 20-21) right before the synchronizations. We imple-
ment the EDDI checker by a comparison instruction icmp,
which compares the register values in the last instruction of
two sequences. If two values are equal to each other, then no
errors are detected and the program jumps to basic blocks
with normal execution, such as BB1 and BB2. Otherwise,
the program jumps to basic blocks that report errors, such
as checkBB0 and checkBB1.

Similar to other state-of-the-art error resilience works [24],
[22], [6], [11], [10], [4], [23], [25], our EDDI considers
one single-bit-flip fault in the computation units per program
execution. The reasons are two-fold: (1) Most of the soft errors
that occurred on the hardware components exhibit one single-
bit-flip error [7] based on an empirical study by Barcelona
Supercomputing Center; (2) Soft errors in the storage com-
ponents of the processors, such as memory or caches, can be
effectively detected using error-correcting code (ECC) [26],
[27], [28] or sampling [29] techniques. This is also one
reason that EDDI technique does not duplicate synchronization
instructions such as store. Besides, in EDDI, developers can
also selectively duplicate instructions based on their reliability

2https://github.com/Mantevo/HPCCG
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1 BB0 ; preds = ...
2 %19 = mul nsw i32 %15, %17
3 %20 = mul nsw i32 %16, %18
4 %21 = load i32* %3, align 4
5 %22 = load i32* %3, align 4
6 %23 = mul nsw i32 %19, %21
7 %24 = mul nsw i32 %20, %22
8 %checker0 = icmp eq i32 %23, %24
9 br i1 %checker0, <BB1>, <checkBB0>

10

11 checkBB0 ; preds = BB0
12 call void @errorDetect()
13

14 BB1 ; preds = BB0
15 store i32 %23, i32* %local_nrow, align 4
16 %26 = load i32* %local_nrow, align 4
17 %27 = load i32* %local_nrow, align 4
18 %28 = icmp sgt i32 %26, 0
19 %29 = icmp sgt i32 %27, 0
20 %checker1 = icmp eq i1 %28, %29
21 br i1 %checker1, <BB2>, <checkBB1>
22

23 checkBB1 ; preds = BB1
24 call void @errorDetect()
25

26 BB2 ; preds = BB1
27 br i1 %28, <BB3>, <BB4>

Fig. 2. EDDI code segment from HPCCG. The blue part denotes the original
program instructions, the yellow part highlights the duplications, and the red
part represents EDDI functional instructions (e.g. comparison).

target and allowable runtime performance overhead [11], [6],
[10]. In this work, we focus on full duplication in EDDI to
provide full fault coverage for programs subjected to our fault
model.

III. EXPERIMENTAL SETUP

In this section, we first introduce the platform and bench-
marks we use in this work, then describe the methodology for
how we conduct experiments to characterize and understand
the EDDI runtime performance overhead variations.

A. Platform

We measure the EDDI runtime performance overhead on a
Ubuntu 20.04 machine with an Intel Core i7-10700 processor
(8-core/16-thread) and 64 GB RAM. The same platforms
are also used in Section V and VI. The EDDI we use is
implemented using the LLVM compiler (version 3.4), and
follows what we describe in Section II. The EDDI method
is inline with other related works about EDDI [6], [11], [10].

B. Benchmark Selection

In our experiment, we select 22 benchmarks, which are
shown in Table I. The benchmarks include the ones used
in several most recent error resilience studies [30], [31],
[32], [11], [33]. Specifically, we include all the 3 bench-
marks from [31], all 5 benchmarks from [33], 4 benchmarks
from [11], and 7 benchmarks from [30]. Besides, we also
include 6 commonly used HPC microkernels from NPB [34]
and SPEC CPU [35] benchmark suites.

TABLE I
DETAILS OF BENCHMARK, WHERE DI COUNT∗ REPRESENTS DYNAMIC

INSTRUCTION MEASURED BY BILLIONS.

Benchmark Suite Domains DI Count∗

kNN Rodinia Machine Learning 19.38
Backprop Rodinia Machine Learning 15.06
BFS Rodinia Graph Algorithm 118.73
Kmeans Rodinia Machine Learning 31.93
Needle Rodinia Biology 1.59
B+tree Rodinia Graph Algorithm 112.91
Pathfinder Rodinia Dynamic Programming 170.09
LUD Rodinia Linear Algebra 81.93
Myocyte Rodinia Biology 61.32
FFT SPLASH-2 Signal Processing 65.19
CoMD Mantevo Molecular Dynamics 11.75
HPCCG Mantevo Linear Algebra 27.30
Xsbench CESAR Monte Carlo Process 31.16
Blackscholes PARSEC Finance 6.16
BT NPB Linear Algebra 5.01
LU NPB Linear Algebra 127.68
SP NPB Linear Algebra 56.78
EP NPB Parallel Computing 21.79
FFT2 MiBench Signal Processing 2.88
Stencil Parboil Stencil Operation 12.45
MCF SPEC Vehicle Scheduling 22.61
LBM SPEC Molecular Dynamics 131.67

C. Experiment Methodology

1) Terminologies: We define three terms: (a) Runtime per-
formance overhead (RPO): RPO denotes the EDDI runtime
performance overhead of a program, and it can be calculated
by (Re − Ro)/Ro, where Re and Ro denote the execution
time in an EDDI-protected program and that in the original
program, respectively. The notion of RPO has been previously
utilized in EDDI-related literature [36], [37]. However, we
have introduced the proper noun in this context for the sake
of simplification. (b) Factor: A parameter that has possible
impacts on EDDI RPO in one program execution. (c) Extra
count per instruction (ECPI): ECPI denotes (Pe − Po)/Io,
where Pe and Po denote the measurement for a factor, such as
L1 data cache store execution count, in the EDDI-protected
program and the original program. Io means the number
of dynamic instructions of the program execution without
EDDI. We use Io instead of Po to normalize the increment
of a factor, which reflects its impact to the overall execution
more faithfully. ECPI is a concept that is widely adopted in
explaining performance at the instruction level [38], [39].

2) Factor Selection: We select 22 architectural and
program-level factors that are highly related and considered
in conventional performance analysis to comprehend the vari-
ation of EDDI RPOs. They are listed in Table II. The selected
factors can be classified into 2 categories: instruction, and
cache/memory. Instruction properties represent general pro-
gram characteristics, such as the number of total executed
instructions and different instruction types. We also include
branch misprediction information to examine whether EDDI
affects the branch prediction performance. Cache/memory
properties record the activities in various levels of cache/mem-
ory hierarchy. In total, we select 10 instruction and 12
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TABLE II
FACTORS AND THEIR CORRECTIONS WITH EDDI RPO.

Factor Category Description Measurement tool Correlation

Dynamic-instructions Instruction Dynamic instruction count. Compiler instrumentation 0.69
Standard-binary-operators Instruction Standard binary instruction (e.g FAdd, Add) count. Compiler instrumentation 0.44
Floating-point-binary-operators Instruction Floating-point binary instruction (e.g FAdd) count. Compiler instrumentation 0.39
Integer-binary-operators Instruction Integer binary instruction (e.g Add) count. Compiler instrumentation 0.23
Logical-operators Instruction Logical instruction (e.g And, Xor) count. Compiler instrumentation -0.02
Cast-operators Instruction Cast instruction (e.g Trunc) count. Compiler instrumentation 0.44
Cmp-operators Instruction Comparison instruction (e.g Icmp) count. Compiler instrumentation 0.04
Basic-blocks Instruction Dynamic basic block count. Compiler instrumentation 0.44
Branch Instruction Dynamic branch count. Linux profiler Perf 0.13
Branch-misses Instruction Dynamic branch mis-prediction count. Linux profiler Perf -0.22
L1-dcache-loads Cache/memory L1 data cache load count. Linux profiler Perf 0.63
L1-dcache-stores Cache/memory L1 data cache store count. Linux profiler Perf 0.17
L1-dcache-load-misses Cache/memory L1 data cache load miss count. Linux profiler Perf -0.11
L1-icache-load-misses Cache/memory L1 instruction cache miss count. Linux profiler Perf 0.42
L2-cache-instruction-hits Cache/memory L2 cache instruction fetch hit count. Linux profiler Perf 0.42
L2-cache-instruction-misses Cache/memory L2 cache instruction fetch miss count. Linux profiler Perf 0.29
L2-cache-data-hits Cache/memory L2 cache data request hit count. Linux profiler Perf 0.22
L2-cache-data-misses Cache/memory L2 cache data request miss count. Linux profiler Perf -0.08
LLC-loads Cache/memory L3 cache load execution count. Linux profiler Perf -0.12
LLC-load-misses Cache/memory L3 cache load miss execution count. Linux profiler Perf 0.04
LLC-stores Cache/memory L3 cache store execution count. Linux profiler Perf 0.05
LLC-store-misses Cache/memory L3 cache store miss count. Linux profiler Perf 0.01

cache/memory factors, Note that some factors are missing
because of the limitation of the profiling tool used in this study,
Perf [40]. For instance, L1 data cache store miss number
is not available on our platform. Given that EDDI does not
duplicate store instructions (Section II), the missing store miss
information has a limited impact on its performance.

3) Experiment Design: To identify the key factors that
affect EDDI RPOs, we design the experiments as follows.

(1) Measurement of EDDI RPOs: We measure the EDDI
RPOs during the program executions. To execute the program
for the measurement, we choose program inputs that produce
at least 1.6 billion dynamic instructions and do not result in
any reported errors. This way, the measured execution time
tends to be stable with little noise on our platform. On average,
the selected inputs incur 51.61 billion dynamic instructions
among 22 selected benchmarks without EDDI protection and
incur 86.63 billion dynamic instructions with EDDI protection.
To minimize the impact of noise, the execution time we
measure before and after EDDI for a program is the average
execution time over three program executions. We clean up
cache etc before each execution.

(2) Measurement of factor ECPI: For all the factors, we
measure their ECPI on our platform. Most factors can be
measured by Perf (V5.19.39), which is a profiling tool for
Linux OS. For the rest factors that are related to program-level
characteristics, we develop LLVM passes to measure them.
Note that all the factors are measured dynamically (with the
same inputs mentioned in (1)).

(3) Exploring the correlations between RPOs and fac-
tors: Finally, we explore the correlations between the EDDI
RPO and each measured factor. The correlation [41] is a
statistical concept that quantifies to what degree two lists of
values are related to each other. A correlation value closer

to 1 (or -1) denotes a stronger positive (or negative) relation
and indicates a factor that may (partly) explain the implied
observation.

IV. EDDI RPO CHARACTERIZATION

In this section, we characterize and understand the factors
that affect the EDDI RPO. In the last column of Table II,
we calculate every factor’s ECPI correlation with RPOs. This
section will go through each of them in more detail. We first
study the EDDI RPO across different benchmarks. Among the
22 selected factors, we find 6 of their ECPI exhibit relatively
stronger correlations (absolute value > 0.3) with EDDI RPOs3.
Besides, we find the EDDI RPO in a program varies across
different program inputs, and the results are also presented.

Overall, the EDDI RPO varies from 8.32% to 203.02%
across the benchmarks, with an average of 80.71%, as can
be seen in Figure 3. For example, benchmarks such as LBM,
Backprop, and Comd reveal very high RPO in EDDI, reaching
203.02%, 145.90%, and 110.35%. On the other hand, a
handful of benchmarks such as FFT2, Pathfinder, BFS have
as little RPO as less than 50%.

A. Instruction Factors

The most obvious factor that causes EDDI RPOs is the
increment of total dynamic instruction counts, with the high-
est correlation (0.69). Figure 3 illustrates measured dynamic
instructions’ ECPI and EDDI RPOs across the benchmarks.
Among different instruction categories, we find that arith-
metic instructions such as logical instructions exhibit lower
correlations compared with memory accesses. This is because
most of the benchmarks are memory-bound. For example,

3Based on a statistic study, if the correlation of two lists is greater than
0.3, they can be seen as correlated [42].
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CoMD, Kmeans and HPCCG benchmarks possess more than
80% memory operators among all their dynamic instructions,
whereas they are less than 10% in BFS, kNN, Pathfinder, and
the computation-bounded benchmarks. Among the memory-
bounded benchmarks, the CPU computing resources are often
underutilized when waiting for cache/memory responses. As a
result, these idle resources can be used to execute duplicated
arithmetic instructions with lower and no performance penalty.
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Fig. 3. EDDI RPO vs Dynamic-instructions ECPI

Figure 4 compares the computation instructions’ ECPI
with EDDI RPOs. Benchmarks are ordered based on their
RPOs, from the lowest to highest. We observe that the ECPI
of standard-binary-operators exhibit moderate correlations
(0.44) with RPOs. We believe this has the same reason as
arithmetic instructions. To further analyze binary operators,
we divide them into floating-point and integer types.

Figure 5 shows the comparison of the floating-point and
integer instruction ECPIs v.s. EDDI RPO. We can find that
the floating-point type ECPI has a higher correlation (0.39)
on the RPO compared with that of the integer type (0.23).
We believe the higher correlation in floating-point instructions
is because the operations of floating-point instructions take up
more pipeline stages than those of integer-type ones. Since not
all the original instructions are duplicated (e.g., store, jump,
etc, see Section II), the duplicated floating-point instructions
by EDDI contribute more towards EDDI RPO in protection.
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Fig. 5. EDDI RPO vs Floating-point/Integer-binary-operators ECPI

For memory operators, such as load instructions, we do
not discuss them in this category since they are more related
to cache/memory category which we will discuss later. In
fact, duplicated memory operator counts may have strong

correlations with EDDI RPOs. The reasons are two-fold:
(1) Modern processors are more capable of dealing with
arithmetic computations than memory accesses, due to the long
latency of the latter. (2) Memory accesses adversely affect
the performance of other instructions because it is difficult
to schedule other instructions across memory accesses when
ensuring the correctness of doing so [43]. We will analyze the
detailed impact of cache/memory accesses in Section IV-B.

EDDI also introduces extra basic blocks and branch instruc-
tions due to the following reason: EDDI inserts a checker
before every store instruction, and the checker introduces
a branch instruction to jump to the error processing if the
mismatch is detected (Section II). These newly introduced
branches also break down basic blocks. As shown in Figure 6,
there is a moderate correlation (0.44) between dynamic basic-
block ECPI with EDDI RPOs. However, such an observation
is not consistent in branch instructions. Figure 7 illustrates
RPOs and incremental branch counts. This is because when the
CPU encounters a branch instruction while running a program,
modern CPUs will invoke branch predictors to predict the
branch direction and target. As described above, the branch
instruction inserted by EDDI only jumps when a soft error
occurs in the program, and this situation is rare given the
relatively low raw error rate. Therefore, branch predictors are
very likely to make correct predictions for branches added
by EDDI. This greatly reduces the impact of extra branch
instructions on the EDDI RPO of the program.
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Figure 7 shows the amount of comparison instructions,
branch instructions, and EDDI RPO. There is a strong correla-
tion (0.89) between extra branch and comparison instructions
since most additional comparison instructions are used to
detect soft errors and therefore guide branches.
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B. Cache/Memory Factors

We measure 12 cache/memory factors and explore their
ECPI correlations with EDDI RPOs. These factors incorporate
events that happened in all three levels of the cache hierarchy,
such as L1-dcache-stores, L2-cache-instruction-hits, etc. LLC
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here refers to the last level cache, which is the L3 cache in
our experimental platform. As shown in Figure 8, L1-dcache-
loads ECPI has the highest correlation (0.63) with EDDI RPOs
among the factors in all cache layers. And we will explain the
impact of the cache from two aspects, namely the loads and
misses of the cache at all levels.
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1) L1 Cache Loads: On one hand, the trend between EDDI
RPOs and L1-dcache-loads ECPI across different benchmarks
is pretty similar. The reason is that for a program, every time
when data is stored or loaded, the L1 cache will be accessed
first. Only when the data misses on L1 cache, the program
will access the data to the next level of cache. Therefore, L1
caches experience the most data accesses in the cache/memory
hierarchy. On the other hand, such a similar trend does not
hold between EDDI RPO and L1-dcache-stores ECPI. Such
a phenomenon is due to store instruction is not duplicated
in EDDI, so the storage-related events in the cache will not
contribute more in terms of RPO.

2) Instruction Fetch: We observe that instruction fetch ac-
cesses (e.g., L1-dcache-load-misses, and L2-cache-instruction-
misses) have lower correlations with RPOs. Although EDDI
will increase the code size and potentially cause more instruc-
tion fetch misses, modern CPUs’ L1 instruction caches have
sufficient capacity to accommodate the code footprint of most
programs, even after applying EDDI. Therefore, EDDI does
not hurt instruction fetch performance significantly.

3) L1 Data Misses and L2/LLC Accesses: We find that
cache misses are not strongly correlated with EDDI RPOs.
The reason is that the extra data loads/stores created by EDDI
access the same addresses as the original ones. As a result,
they always hit in the L1 cache and EDDI does not affect the
L1 cache miss numbers. Recall that the number of L2 cache
accesses is equal to the number of L1 cache misses, so it does
not change with and without EDDI. Similarly, we can derive
that the numbers of LLC and memory accesses do not change
notably with and without EDDI. Therefore, although lower-
level cache and memory accesses incur much higher latency,
they have low correlations with EDDI RPOs.

C. Program Inputs

Existing works [30], [44], [32], [45], [33] have demonstrated
that program inputs have significant impacts on the error
propagation behaviors of a program, and hence affect SDC
coverage of EDDI protections. Since error resilience and RPOs
in a program are two critical parameters of EDDI, we explore
the EDDI RPOs in a program across different program inputs.
Of the 22 benchmarks we selected, only 16 of them provide

multiple program inputs that we are able to parse – the
other 6 benchmarks either lack documentation or have input
formats that are not easily generated. For each benchmark
used, we generate 30 random program inputs to conduct this
experiment. All the generated inputs can lead to more than
1.6 billion dynamic instructions in program execution without
producing any exceptions that lead to program crashes. This
allows the program execution to be stable without much noise
in the measurement on our platform. Since we use the same
sets of benchmarks from other prior works that investigate
program resiliency across multiple program inputs, we adopt
the input generation method from them as well [30], [45], [46].
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Fig. 9. EDDI RPO ranges across different program inputs

Figure 9 presents the resultant RPO ranges for each bench-
mark, which are calculated as the difference between the
maximum RPO value and the minimum RPO value measured
across the generated inputs. Here, we can observe that EDDI
RPOs are input-specific, and the range is highly application-
specific, varying from 7.04% in Xsbench to 68.32% in Needle.
This is expected since the input impacts the execution path of a
program, through different branching results and loop counts.
Benchmarks with irregular computations (e.g. Kmeans) are
more subject to this impact than regular ones (e.g. Xsbench).

D. Summary of EDDI RPO Characterization

In this Section, we analyze EDDI RPO variations among 10
instruction factors, 12 cache/memory factors, and program in-
put variations. The key results are summarized as follows: (1) 5
instruction factors have certain impacts on program EDDI
RPOs, including dynamic instruction count (0.69), standard-
binary-operators (0.44), floating-point binary operators (0.39),
cast operators (0.44), and dynamic basic block count (0.44).
(2) 1 cache/memory factor contributes to the variation
of program EDDI RPOs, including L1 data cache loads
(0.69). (3) Changing program inputs can lead to an obvious
variation of program EDDI RPOs, and such variation varies
from 7.04% in Xsbench to 68.32% in Needle. According to the
characterization results, we propose two research questions:

• Q1: Since EDDI RPOs are input-specific, can we bound
the RPO in one program across different inputs, so that
to provide an accurate EDDI performance estimation and
avoid timing violation in real-time systems?

• Q2: Can we accelerate the EDDI RPO without losses of
protection effectiveness based on the identified factors?

To answer the above two research questions, we propose two
techniques FUZZYB and CELER, in order to help developers to
better understand and optimize EDDI in production. FUZZYB
is designed based on an input searching technique that is
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guided by the 6 recognized factors, to efficiently locate the
highest EDDI RPO in one program among its huge input
space. CELER is a faster EDDI design by control-flow opti-
mization, which is also analyzed from the 6 dominant factors.
We will explain the design details of FUZZYB and CELER in
Section V and VI, respectively.

V. FUZZYB: BOUNDING EDDI RPO ACROSS PROGRAM
INPUTS

As mentioned, both EDDI fault coverage and EDDI RPO
are two critical parameters in the protection. Existing works
have demonstrated that EDDI fault coverage varies a lot in
a program across different inputs, and proposed techniques
to bound it [30]. Since EDDI RPO also varies significantly
across inputs (Section IV-C), one needs to bound EDDI RPO
in the evaluation to understand the worst cases, take them into
consideration in regard to the time and power constraints in
the system design, and hence avoid any potential violations.
In this use case, we propose FUZZYB that finds the program
input which exposes the highest EDDI RPO in a program -
we call such input RPO-bound input of the program.
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Fig. 10. Workflow of FUZZYB

A. Design Overview

Figure 10 presents the workflow of FUZZYB. FUZZYB
utilizes the genetic algorithm [47] as the input searching
engine and leverages the knowledge of factors identified in
our analysis (Section IV) to guide the search of RPO-bound
inputs for a program. FUZZYB formulates the search as an
optimization problem, monitors the ECPIs of the factors, and
mutates the inputs to maximize the ECPIs, in order to bound
EDDI RPO. Users only need to provide the program source
code, FUZZYB can generate its corresponding RPO-bound in-
put automatically, without any interventions. FUZZYB consists
of a set of LLVM passes and is driven by Python scripts.
There are four major components: EDDI Transformation (➊),
ECPI Profiling (➋), Input Searching Engine (➌), and Fitness
Evaluation (➍).

B. Design Details

1) EDDI Transformation (➊) and ECPI Profiling (➋):
Given a program source code, we perform EDDI code trans-
formation and profile the ECPIs of the factors. We first
perform static code transformation to generate the EDDI code
at compile time. Then, we execute the program with EDDI
and without EDDI using the measurement tool mentioned in
Table II in order to profile the ECPIs.

2) Input Searching Engine (➌): After we obtain the ECPIs
in the program, we feed them into the Input Searching Engine,
which is an iteration-based program fuzzing engine driven
by the genetic algorithm. The first iteration starts from a
random input, and the input searching engine uses a mutator
to slightly change one random input parameter of this input. If
the selected input parameter is numerical, the input searching
engines modify the value with a random number between
±10% of the current value. Otherwise, it randomly enumerates
a possible value for the input parameter. The generated input
will be the input of Fitness Evaluation (➍), which calculates
a fitness score in turn.

3) Fitness Evaluation (➍): Fitness Evaluation is designed
to calculate the generated input in the current iteration into
a fitness score. We integrate knowledge obtained from Sec-
tion IV as a multi-object optimization. We consider each iden-
tified high-correlation factor by weighting them with Softmax
function. Specifically, given an input i, we formulate this
process into Equation 1.

Fitnessi =
1

2
RPOi +

1

2

K∑
k=1

eFCk∑K
j=1 e

FCj

Factorki (1)

where Fitnessi and RPOi represent the fitness score and
EDDI RPO of input i, K=6 is the number of identified high-
correlation factors (absolute value > 0.3 in Table II), FC
denotes the factor correlation, and Factorki represents the k-th
factor of i-th input measured by dynamic profiling. Candidate
inputs with the highest fitness score will survive to the next
iteration, and the RPO-bound input can hence be found when
the search time limit is reached. Note that there is only one
program execution in each iteration, and the time overhead
of the input searching engine is less than 1% compared with
program execution – we measure it by the Time Manager.

C. Evaluation of FUZZYB

1) Evaluation Settings: Same as Section IV-C, we use 16
benchmarks to evaluate FUZZYB. The baseline method is
the random sampling approach, which indicates executing the
program with randomly sampled inputs to find the RPO-bound
one – this is currently the only available approach to bound
EDDI RPO [30]. We set the search time limit to 200 iterations
in FUZZYB– since we find the bounded EDDI RPO will not
increase for all selected benchmarks in 200 iterations.

2) Results: We evaluate FUZZYB from two perspectives:
(1) the efficiency of bounding EDDI RPOs and (2) how
identified factors contribute to bounding the EDDI RPOs.
The first evaluates the goal of FUZZYB, whereas the other
experiment demonstrates the importance of high-correlated
factors in FUZZYB workflow.

Figure 11 shows the highest EDDI RPOs bounded by
FUZZYB and the baseline in each benchmark. As can be seen,
FUZZYB always finds the input that leads to a higher EDDI
RPO given the time allowance. The only exception is the
FFT benchmark, we will explain the reason in the following
context. For example, in CoMD, Pathfinder, and Backprop
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Fig. 11. The results of bounding EDDI RPOs by FUZZYB. In each subfigure, the x-axis denotes “Number of Iteration”, and the y-axis denotes “EDDI RPO”.
The left blue bar and right red bar represent FUZZYB and Baseline.

benchmarks, FUZZYB can find the RPO-bound input with only
50, 100, and 50 iterations, whereas these numbers are 100,
200, and 100 iterations in the baseline method. In Pathfinder
and Xsbench benchmarks, the baseline method can temporarily
localize higher EDDI RPOs in the 50th iteration, but the
bounded EDDI RPO will no longer increase in later itera-
tions, which is far away from FUZZYB. In all, FUZZYB can
efficiently find the RPO-bound input in EDDI, and it usually
reaches its plateau with roughly 80 iterations on average. We
also observe that the baseline method can find a higher EDDI
RPO in FFT compared with FUZZYB. Due to the random
nature of the baseline approach, the random sampling method
may outperform FUZZYB, however, the chance is low as
shown in the results.
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Fig. 12. The impact of identified factors in bounding EDDI RPO in FUZZYB.

Figure 12 shows our designed ablation experiments across
16 selected benchmarks in demonstrating the importance of
identified factors in FUZZYB workflow. Besides FUZZYB
(with all 6 factors) and baseline (with no factors and just search
blindly), we add FUZZYB (Inst. Only) and FUZZYB (Mem.
Only), which represent FUZZYB executed with only 5 identi-
fied instruction factors and 1 identified memory factors in the
Fitness Evaluation (➍). By doing so, we can understand how
those factors contribute to EDDI RPO bounding process in
FUZZYB. As we can see, FUZZYB with all 6 factors can bound
higher EDDI RPOs compared with the other three methods for
all the iterations. FUZZYB (Inst. Only) can achieve similar
EDDI RPO bounding efficiency compared with FUZZYB in

the beginning 20 iterations. However, its performance then
slows down considerably in later iterations due to the absence
of cache/memory-level information. FUZZYB (Mem. Only)
performs better in bounding EDDI RPO compared with the
baseline methods, but the bounded EDDI RPOs are not as
high as FUZZYB and FUZZYB (Inst. Only). Note that we also
observe the EDDI RPOs bounded by FUZZYB (Inst. Only)
and FUZZYB (Mem. Only) continue to increase slowly after
200 iterations – they may finally find the EDDI RPOs as
high as FUZZYB with all 6 factors but obviously take much
more iterations to converge. In all, upon the convergence, the
bounded EDDI RPO in FUZZYB is 25.00%, 63.00%, and
117.36% higher than FUZZYB (Inst. Only), FUZZYB (Mem.
Only), and baseline, respectively.

VI. CELER: ACCELERATING EDDI WITH CONTROL-FLOW
OPTIMIZATION

Recall that we identified 6 factors that affect EDDI RPO
variation (Section IV). Among those factors, 4 of them (includ-
ing dynamic-instructions, standard-binary-operators, floating-
point-binary-operators, and cast-operators) are program-level
factors, which are determined during the implementation
phases by developers and cannot be easily modified by users.
For the cache/memory category, L1-dcache-loads is tied to
the architecture design of the hardware, so it cannot be easily
modified either. As a result, it may be possible to leverage the
factor basic-blocks to reduce the EDDI RPO using compiler
techniques, which motivates this technique.

As we mentioned in Section II, EDDI breaks original
basic blocks into multiple ones by inserting the replications
and functional instructions (e.g. checkers). Such operation
adds additional basic blocks inevitably. Since basic block is
the minimal unit to record the program controlf-low, EDDI
drastically complicates the program control-flow, reducing the
efficiency by shortening the window of instruction scheduling.
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BB0
  R1 = add R2 R3
  R1’= add R2 R3
  R0 = cmp R1 R1’
  br R0, BB1, BB2

BB1 
  errorDetect()

BB2
  store R4 R5
  R5 = mul R2 R3
  R5’= mul R2 R3
  R0 = cmp R5 R5’
  br R0, BB3, BB4

BB0
  R1 = add R2 R3
  store R1 R4
  R5 = mul R2 R3
  store R5 R6

BB3 
  errorDetect()

BB4 
  store R5 R6

BB0
  Buff = true
  R1 = add R2 R3
  R1’= add R2 R3
  R0 = cmp R1 R1’
  Buff = and Buff R0
  store R1 R4
  R5 = mul R2 R3
  R5’= mul R2 R3
  R0 = cmp R5 R5’
  Buff = and Buff R0
  store R5 R6

BBn
  errorDetect()

(a) (b) (c)
Fig. 13. Code example of original program (a), EDDI (b), and CELER (c).

In light of this, we propose a new EDDI design, called CELER,
which optimizes the control-flow in EDDI. We present the
detailed design and its evaluation in this section.

A. Design of CELER

Figure 13 illustrates how CELER works in an instruction
sequence. In EDDI, the original basic block will be broken at
every synchronization point (e.g., store, jump, etc, Section II).
Each synchronization point also requires one extra basic block
to compare the computation values between the two copies.
In comparison, CELER introduces a local buffer to avoid
fragmenting existing basic blocks. At the beginning of each
function, CELER defines a buffer (e.g., a local variable in
register) and initializes its value as true. The scope of this
buffer is the entire function since all basic blocks in the same
function hold a single entry and a single exit point. At each
synchronization point in this function, CELER updates the
buffer by a logic operator, an and operator, instead of breaking
the current basic block into pieces. As a result, CELER only
needs to check the buffer only once for a mismatch to detect
errors (if any) at the end of each subroutine. By doing so
CELER significantly simplifies the program control-flow, hence
reducing the basic-block ECPI and improving the RPO.

B. Evaluation of CELER

We first evaluate the capability of CELER in simplify-
ing the program control-flow. Results can be found in Fig-
ure 14. To measure the control-flow complexity, we use
dynamic basic block overhead, which can be formulated as
(BBdup−BBori)/BBori, where BBdup and BBori represent
the dynamic basic block numbers during program execution
in EDDI/CELER and the original program, respectively. As we
can see, CELER significantly reduces the dynamic basic block
overheads on all 22 selected benchmarks. In Blackcholes, BT,
and LBM, the dynamic basic block overheads in original EDDI
can be as high as 629.73%, 528.84%, and 2786.50%. However,
CELER optimizes those numbers into 20.11%, 2.34%, and
0.17%. In 15 of 22 benchmarks, the dynamic basic block

overheads in CELER are less than 1%, indicating their pro-
gram control-flow complexities are even similar to original
programs. On average, the dynamic basic block overhead of
CELER is 2.65%, which is only 0.83% of EDDI.

We then compare the RPOs between EDDI and CELER, and
results are shown in Figure 15. We can observe that CELER
significantly outperforms EDDI in most of the benchmarks.
The RPO reduction can be as high as 91% in EP, whereas,
in some benchmarks, such as B+tree and Pathfinder, CELER
performs similarly to EDDI. This is because the instructions to
be duplicated in a basic block in these benchmarks are smaller,
either CELER or EDDI results in stable Basic Block ECPIs,
hence limiting the room for improvement. Interestingly, we
also observe that CELER has a negative RPO in Blackscholes
- the program runs faster with CELER compared with the
program execution without any protections. The dominant
reason is the drastically reduced dynamic basic block overhead
– only 3.19% compared with EDDI, as shown in Figure 14.
Similar situations also happen in LBM, where the dynamic
basic block overhead and RPO reductions are 99.99% and
44.85%. In addition, we speculate that another reason is that
the original program under-unitizes hardware resources, but
it gets improved with adding CELER. We also observe that
CELER does not achieve reduce RPO in some benchmarks,
such as LUD and Needle, even though the dynamic basic
block numbers are significantly reduced. The reason can be
explained below. In those benchmarks, most of the synchro-
nization points are at the end of basic blocks, indicating that
duplicating instructions in such basic blocks will not generate
extra basic blocks except checker ones. In that case, CELER
mainly reduces the number of checker basic blocks rather than
the intervention ones. Considering other introduces computa-
tions such as buffer updates and, CELER compromises the
execution performance compared with it in other benchmarks
such as EP, Backprop, and LBM. In all, CELER is proved to
be a promising solution and on average has only 62.06% RPO,
which is 25.08% faster than the original EDDI.

We also evaluate the error detection efficiency of EDDI and
CELER. In this case, we only focus on silent data corruption
(SDC), which means the program completes its execution but
produces incorrect output. SDC has been recognized as the
most insidious failure type [22], [23], [6], [11]. To conduct
fault injection campaigns, we randomly flip a bit in a randomly
chosen instruction during the program execution and observe
whether the fault injection leads to SDC or not. We then repeat
the process 1,000 times in each benchmark in order to achieve
statistical results. Results show that EDDI and CELER both
can achieve 100% SDC coverage on 22 selected benchmarks,
indicating CELER can efficiently accelerate the EDDI RPO
without losing any detection effectiveness.

VII. CASE STUDY: EVALUATING FUZZYB AND CELER IN
MISSION-CRITICAL SPACE APPLICATION

Beyond 22 benchmarks mentioned in Table I, we also
evaluate FUZZYB and CELER with a real-world mission-
critical space application. In space environments, hardware
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devices are extremely vulnerable to soft errors due to harsh
cosmic radiations without atmosphere, making software-based
EDDI an important protection technique [13], [14], [15]. In
this case study, we evaluate our techniques with EEKF space
application [48]. EEKF, designed by German Aerospace Cen-
ter, is a Kalman-Filter implementation extended for embedded
real-time systems. Specifically, the implementation of the core
components in EEKF has been a fundamental algorithm in
many spacecraft systems, such as orbit determination, altitude
control etc. [49]. Thus, bounding the performance variation (by
FUZZYB) and improving the EDDI performance (by CELER)
are both critical and beneficial to EEKF.
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Figure 16 shows the results. Similar to the evaluation sec-
tion, we evaluate the effectiveness of FUZZYB in Figure 16(a)
and the performance of CELER in Figure 16(b) and (c).
In EEKF, FUZZYB localizes the highest RPO-bound input
within 50 iterations, whereas the baseline method can reach its
plateau with more than 200 iterations. Additionally, the RPO-
bound input found by FUZZYB also leads to a higher EDDI
RPO (40.70%) compared with the baseline method (36.50%).
For EEKF with CELER, we can observe that CELER reduces
the dynamic basic block overhead from 167.20% to 3.89%,
hence reducing the EDDI RPO from 33.22% to 22.22%,
compared with the original EDDI method. Those results are
inline with what has been observed in Section V and VI,
demonstrating the effectiveness of our proposed techniques in
real-world space applications such as EEKF.

VIII. RELATED WORK

EDDI technique is a software-based soft error protec-
tion technique and has been proposed for more than two
decades [8], [50], [13], [51]. Soon after that, it became a
popular technique due to low cost and high platform portabil-
ity [6], [11], [10], [12], [9], [33]. Reis et al. [9] improved EDDI
by incorporating a software-only signature-based control-flow
checking scheme to achieve exceptional fault coverage. La-
guna et al. [11] utilized machine learning techniques to selec-
tively duplicate the most vulnerable instructions, in order to
detect soft errors at a low cost. Mahmoud et al. [12] extended
EDDI to CUDA back-end compiler (ptxas) for NVIDIA GPUs.
Huang et al. [32], [33] incorporated the input searching
algorithm to identify incubative instructions, boosting EDDI
with HPC applications across multiple program inputs. In
space domains where devices are highly exposed to cosmic
radiation, EDDI is also adopted due to low cost and no
hardware modifications [13], [14], [15]. For example, Stanford
University launched a project called CRC ARGOS project
using EDDI as one of their software-implemented protection
techniques [14]. Different from existing works mainly focus
on fault coverage variation, our work focuses on characterizing
and understanding the EDDI runtime performance overhead,
and our EDDI implementation is also inline with state-of-the-
art EDDI works [10], [6], [9], [11], [12].

IX. CONCLUSION

In this work, we comprehensively characterize the EDDI
RPO variations, and we found that 6 hardware and software-
level factors are highly correlated with EDDI RPO variations.
Based on the identified factors, we propose two use cases:
FUZZYB and CELER. FUZZYB can efficiently bound EDDI
RPO in a program across different inputs, while CELER is a
novel EDDI design to reduce EDDI RPO by compiler-level
control-flow optimization. And we also implement FUZZYB
and CELER in a real-world space application EEKF, the result
shows that our techniques are efficient in both bounding RPO
and accelerating the program’s RPO.

10



REFERENCES

[1] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi,
“Modeling the effect of technology trends on the soft error rate of combi-
national logic,” in Proceedings International Conference on Dependable
Systems and Networks. IEEE, 2002, pp. 389–398.

[2] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A systematic methodology to compute the architectural vulnerabil-
ity factors for a high-performance microprocessor,” in Proceedings.
36th Annual IEEE/ACM International Symposium on Microarchitecture,
2003. MICRO-36. IEEE, 2003, pp. 29–40.

[3] G. P. Saggese, N. J. Wang, Z. T. Kalbarczyk, S. J. Patel, and R. K. Iyer,
“An experimental study of soft errors in microprocessors,” IEEE micro,
vol. 25, no. 6, pp. 30–39, 2005.

[4] G. Papadimitriou and D. Gizopoulos, “Demystifying the system vulnera-
bility stack: Transient fault effects across the layers,” in 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2021, pp. 902–915.

[5] T. Tsai, N. Theera-Ampornpunt, and S. Bagchi, “A study of soft
error consequences in hard disk drives,” in IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN 2012). IEEE,
2012, pp. 1–8.

[6] C. Kalra, F. Previlon, N. Rubin, and D. Kaeli, “Armorall: Compiler-based
resilience targeting gpu applications,” ACM Transactions on Architecture
and Code Optimization (TACO), vol. 17, no. 2, pp. 1–24, 2020.

[7] L. Bautista-Gomez, F. Zyulkyarov, O. Unsal, and S. McIntosh-Smith,
“Unprotected computing: A large-scale study of dram raw error rate on a
supercomputer,” in SC’16: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE, 2016, pp. 645–655.

[8] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Error detection by
duplicated instructions in super-scalar processors,” IEEE Transactions
on Reliability, vol. 51, no. 1, pp. 63–75, 2002.

[9] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
“Swift: Software implemented fault tolerance,” in International sympo-
sium on Code generation and optimization. IEEE, 2005, pp. 243–254.

[10] Q. Lu, K. Pattabiraman, M. S. Gupta, and J. A. Rivers, “Sdctune: a
model for predicting the sdc proneness of an application for configurable
protection,” in Proceedings of the 2014 International Conference on
Compilers, Architecture and Synthesis for Embedded Systems, 2014, pp.
1–10.

[11] I. Laguna, M. Schulz, D. F. Richards, J. Calhoun, and L. Olson,
“Ipas: Intelligent protection against silent output corruption in scientific
applications,” in 2016 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO). IEEE, 2016, pp. 227–238.

[12] A. Mahmoud, S. K. S. Hari, M. B. Sullivan, T. Tsai, and S. W. Keck-
ler, “Optimizing software-directed instruction replication for gpu error
detection,” in SC18: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 2018, pp. 842–
854.

[13] P. P. Shirvani, N. Saxena, N. Oh, S. Mitra, S.-Y. Yu, W.-J. Huang,
S. Fernandez-Gomez, N. A. Touba, and E. J. McCluskey, “Fault-
tolerance projects at stanford crc,” in MAPLD 1999- Annual Military
and Aerospace Applications of Programmable Devices and Technologies
Conference, 2 nd, Johns Hopkins Univ, APL, Laurel, MD. Citeseer,
1999.

[14] “The argos project,” in 2009 International Test Conference, 2009, pp.
1–1.

[15] A. Spector and D. Gifford, “The space shuttle primary computer system,”
Communications of the ACM, vol. 27, no. 9, pp. 872–900, 1984.

[16] B. Zhang, Y. Huang, and G. Li, “Salus: A novel data-driven monitor
that enables real-time safety in autonomous driving systems,” in 2022
IEEE 22nd International Conference on Software Quality, Reliability
and Security (QRS). IEEE, 2022, pp. 85–94.

[17] A. Burns, “Scheduling hard real-time systems: a review,” Software
Engineering Journal, vol. 6, no. 3, pp. 116–128, 1991.

[18] N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellings, Real-time
system scheduling. Springer, 1995.

[19] N. G. Leveson and C. S. Turner, “An investigation of the therac-25
accidents,” Computer, vol. 26, no. 7, pp. 18–41, 1993.

[20] R. Cole, “Kalman filter,” https://en.wikipedia.org/wiki/Therac-25.
[21] E. Cheng, S. Mirkhani, L. G. Szafaryn, C.-Y. Cher, H. Cho, K. Skadron,

M. R. Stan, K. Lilja, J. A. Abraham, P. Bose et al., “Clear: C ross-l ayer e
xploration for a rchitecting r esilience-combining hardware and software

techniques to tolerate soft errors in processor cores,” in Proceedings of
the 53rd Annual Design Automation Conference, 2016, pp. 1–6.

[22] L. Yang, B. Nie, A. Jog, and E. Smirni, “Enabling software resilience
in gpgpu applications via partial thread protection,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). IEEE,
2021, pp. 1248–1259.

[23] G. Li, K. Pattabiraman, S. K. S. Hari, M. Sullivan, and T. Tsai, “Model-
ing soft-error propagation in programs,” in 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).
IEEE, 2018, pp. 27–38.

[24] L. Guo, D. Li, and I. Laguna, “Paris: Predicting application resilience
using machine learning,” Journal of Parallel and Distributed Computing,
vol. 152, pp. 111–124, 2021.

[25] B. Zhang, L. Yang, G. Li, and H. Xu, “Investigating the impact of
high-level software design on low-level hardware fault resilience,” in
2023 53rd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks-Supplemental Volume (DSN-S). IEEE, 2023, pp.
163–167.

[26] W. W. Peterson, W. Peterson, E. J. Weldon, and E. J. Weldon, Error-
correcting codes. MIT press, 1972.

[27] M. B. Sullivan, N. Saxena, M. O’Connor, D. Lee, P. Racunas, S. Huk-
erikar, T. Tsai, S. K. S. Hari, and S. W. Keckler, “Characterizing
and mitigating soft errors in gpu dram,” in MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, 2021, pp.
641–653.

[28] F. Qin, S. Lu, and Y. Zhou, “Safemem: Exploiting ecc-memory for
detecting memory leaks and memory corruption during production
runs,” in 11th International Symposium on High-Performance Computer
Architecture. IEEE, 2005, pp. 291–302.

[29] S. Silvestro, H. Liu, T. Zhang, C. Jung, D. Lee, and T. Liu, “Sampler:
Pmu-based sampling to detect memory errors latent in production
software,” in 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 2018, pp. 231–244.

[30] M. H. Rahman, A. Shamji, S. Guo, and G. Li, “Peppa-x: finding
program test inputs to bound silent data corruption vulnerability in hpc
applications,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2021, pp.
1–13.

[31] Z. Li, H. Menon, K. Mohror, P.-T. Bremer, Y. Livant, and V. Pascucci,
“Understanding a program’s resiliency through error propagation,” in
Proceedings of the 26th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2021, pp. 362–373.

[32] Y. Huang, S. Guo, S. Di, G. Li, and F. Cappello, “Hardening selective
protection across multiple program inputs for hpc applications,” in
Proceedings of the 27th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2022, pp. 437–438.

[33] ——, “Mitigating silent data corruptions in hpc applications across
multiple program inputs,” in SC22: International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE,
2022, pp. 1–14.

[34] D. Bailey, T. Harris, W. Saphir, R. Van Der Wijngaart, A. Woo, and
M. Yarrow, “The nas parallel benchmarks 2.0,” Technical Report NAS-
95-020, NASA Ames Research Center, Tech. Rep., 1995.

[35] J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM SIGARCH
Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[36] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches,” in 2006 39th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO’06). IEEE, 2006, pp. 423–432.

[37] W. Chen and E. Deelman, “Workflow overhead analysis and optimiza-
tions,” in Proceedings of the 6th workshop on Workflows in support of
large-scale science, 2011, pp. 11–20.

[38] V. Karakostas, O. S. Unsal, M. Nemirovsky, A. Cristal, and M. Swift,
“Performance analysis of the memory management unit under scale-
out workloads,” in 2014 IEEE International Symposium on Workload
Characterization (IISWC). IEEE, 2014, pp. 1–12.

[39] S. Caselli, E. Faldella, and F. Zanichelli, “Performance evaluation of
processor architectures for robotics,” in Proceedings, Advanced Com-
puter Technology, Reliable Systems and Applications. IEEE Computer
Society, 1991, pp. 667–668.

[40] Perf linux profiling tool. [Online]. Available: https://perf.wiki.kernel.
org/index.php/Tutorial

11

https://en.wikipedia.org/wiki/Therac-25
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial


[41] X.-L. Meng, R. Rosenthal, and D. B. Rubin, “Comparing correlated
correlation coefficients.” Psychological bulletin, vol. 111, no. 1, p. 172,
1992.

[42] D. Mindrila and P. Balentyne, “Scatterplots and correlation,” Retrieved
from, 2017.

[43] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantita-
tive approach. Elsevier, 2011.

[44] D. D. Leo, F. Ayatolahi, B. Sangchoolie, J. Karlsson, and R. Jo-
hansson, “On the impact of hardware faults–an investigation of the
relationship between workload inputs and failure mode distributions,” in
International Conference on Computer Safety, Reliability, and Security.
Springer, 2012, pp. 198–209.

[45] L. Yang, “Typhoon: Enabling gpgpu application resilience estimation
with different input types.”

[46] G. Li and K. Pattabiraman, “Modeling input-dependent error propagation
in programs,” in 2018 48th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). IEEE, 2018, pp. 279–
290.

[47] J. H. Holland, “Genetic algorithms,” Scientific american, vol. 267, no. 1,
pp. 66–73, 1992.

[48] C. Schreppel, A. Pfeiffer, J. Ruggaber, and J. Brembeck, “Implemen-
tation of a c library of kalman filters for application on embedded
systems,” Computers, vol. 11, no. 11, p. 165, 2022.

[49] R. Cole, “Kalman filter,” https://en.wikipedia.org/wiki/Kalman filter.
[50] P. P. Shirvani, N. Oh, E. J. Mccluskey, D. Wood, M. N. Lovellette, and

K. Wood, “Software-implemented hardware fault tolerance experiments:
Cots in space,” in International Conference on Dependable Systems and
Networks (FTCS-30 and DCCA-8), New York (NY), 2000.

[51] Z. He, Y. Huang, H. Xu, D. Tao, and G. Li, “Demystifying and
mitigating cross-layer deficiencies of soft error protection in instruction
duplication,” in SC23: International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 2023.

12

https://en.wikipedia.org/wiki/Kalman_filter

	Introduction
	Error Detection by Instruction Duplication
	Experimental Setup
	Platform
	Benchmark Selection
	Experiment Methodology
	Terminologies
	Factor Selection
	Experiment Design


	EDDI RPO Characterization
	Instruction Factors
	Cache/Memory Factors
	L1 Cache Loads
	Instruction Fetch
	L1 Data Misses and L2/LLC Accesses

	Program Inputs
	Summary of EDDI RPO Characterization

	FuzzyB: Bounding EDDI RPO across Program Inputs
	Design Overview
	Design Details
	EDDI Transformation (➊) and ECPI Profiling (➋)
	Input Searching Engine (➌)
	Fitness Evaluation (➍)

	Evaluation of FuzzyB
	Evaluation Settings
	Results


	Celer: Accelerating EDDI with Control-Flow Optimization
	Design of Celer
	Evaluation of Celer

	Case Study: Evaluating FuzzyB and Celer in Mission-Critical Space Application
	Related Work
	Conclusion
	References

