
Characterizing Runtime Performance Variation
in Error Detection by Duplicating Instructions

Yafan Huang*, Zhengyang He*, Lingda Li, Guanpeng Li

ISSRE 2023
 Florence, Italy

■ Soft error is becoming prevalent in modern processors.

Soft Error

[1] https://labs.engineering.asu.edu/mps-lab/research/error-resilience/

0000

[1]

■ Soft error may lead to severe failure outcomes, hence should be mitigated.

soft error error
propagation

SDC

Crash

Benign

0010

https://labs.engineering.asu.edu/mps-lab/research/error-resilience/

Software Solutions

Device/Circuit Level

■ Software solution is more flexible and cost-effective.

Architectural Level

Operating System Level

Application Level

soft error

De
cr

ea
si

ng

Pr
ot

ec
tio

n
O

ve
rh

ea
d

impactful errors

Error Detection by Duplicating Instructions (EDDI)

A' B'

C'

D'

A B

C

D

Checker

■ EDDI duplicates instructions at compile-time and detects errors at run-time.

■ Compiler-level transformation, hence program-agnostic.

normal execution report errors!

D=D'?

Original instruction

Duplicated instruction

Functional instruction
(e.g. comparision, jump)

Argos Project[1]

[1] Strategies for fault-tolerant, space-based computing: Lessons learned from the ARGOS testbed

Motivation: Runtime Performance Variation in EDDI

■ EDDI runtime performance varies a lot across different programs.
■ From 8% on FFT2 to 203% on LBM benchmarks.

195%

[1] An investigation of the therac-25 accidents

■ Understanding performance variation is important to real-time systems.
■ Therac-25 accidents[1] 1985~1987, due to unscheduled subcomponents.

■ This is the first work for studying EDDI runtime performance.

Goal

■ Goal: characterize and understand performance variation of EDDI.

■ G1: Identify root-causes that affect EDDI the most.

■ G2: Assist system-designers to develop safe and performant EDDI.

A comprehensive correlation study.

Two techniques: FuzzyB and Celer.

Experimental Setups

■ Platform
■ Ubuntu 20.04 OS.

■ Intel Core i7-10700 processor.

■ 64 GB RAM.

■ Benchmarks
■ 22 open-source benchmarks.

■ EDDI Implementation
■ LLVM transformation passes.

■ Full duplication.

[1] https://llvm.org/

LLVM Compiler Infrastructure[1]

Benchmark Application Domains

https://llvm.org/

Correlation Study: Methodology

■ Correlation Study
■ How strong two arrays are related to each other.

■ EDDI runtime performance and target factor.

■ [-1, 1], where |cor| > 0.3 can be seen as correlated[1].

Program-level factors
dynamic instructions
fp binary operators
int binary operators
logical binary operators
basic blocks
Branch
…

Architecture-level factors
L1 dcache loads
L1 icache load misses
L2 cache instruction hits
L2 cache instruction misses
LLC loads
LLC stores
…

Pearson Correlation Coefficient

[1] Scatterplots and correlation, 2017

■ Target Factors
■ 10 program-level factors

■ 12 architecture-level factors

■ Profiling Tools
■ Architecture-level: Linux Perf

■ Program-level: LLVM passes

Correlation Study: Results

■ We found 6 factors (5 + 1) that are correlated with EDDI performance variation.

Not consider due to
limited usage!

✗

Instruction: Program-level

Cache/memory: Architectural

Correlation Study: Summary

■ 6 factors (5 + 1) that are correlated with EDDI performance variation.

■ Two techniques to assist the usage of EDDI in real-world applications:

FuzzyB Workflow
Celer Example

■ FuzzyB: bounding EDDI performance variation with the identified factors.

■ Celer: accelerating EDDI performance with optimized program control-flow.

FuzzyB: Bounding EDDI Performance Variation

■ EDDI performance not varies across benchmarks, but also across inputs.
■ From 7% in Xsbench to 68% in Needle.

EDDI Performance Variation across Different Inputs

■ Fuzzing technique can locate input with a certain feature.
■ 6 identified factors contribute dominantly to such feature.

7%

68%

FuzzyB: Bounding EDDI Performance Variation

■ Input searching engine: a fuzzing-based technique to bound EDDI performance

within a certain number of iterations.

■ Fitness score: 6 identified factors weighted by softmax function.

EDDI
Transform.

Profiling

M
ea

su
re

d
Fa

ct
or

s
Input

Searching
Engine

Time
Manager

Mutator

Fitness
Evaluation

Code
with EDDI

Program
Source Code

Generated
Input

Fitness Score
1

2

3
4

Target Input

each identified factor

upper bound

guide searching
engine

FuzzyB: Bounding EDDI Performance Variation

■ FuzzyB bound higher EDDI runtime performance with fewer iterations.

number of iteration

bounded EDDI perf.

Bounding EDDI performance with FuzzyB (left) and Random Fuzzer (right)

Celer: Accelerating EDDI Performance

■ 6 identified factors:
■ dynamic instructions

■ stdbin operators

■ fp operators

■ cast operators

■ basic blocks

■ L1 dcache loads

program-specific

invisible to developer

Our target!

BB12

BB13

BB14 BB16

BB15 BB17

program control-flow
and basic blocks

■ Can we let EDDI run faster?

■ Accelerating EDDI runtime performance by reducing number of basic blocks.

Celer: Accelerating EDDI Performance

■ Celer does not increase basic block via simplifying control-flow with a buffer.

■ Celer is a variant of EDDI without any losses of soft error detection effectiveness.

BB0
 R1 = add R2 R3
 R1’= add R2 R3
 R0 = cmp R1 R1’
 br R0, BB1, BB2

BB1
 errorDetect()

BB2
 store R4 R5
 R5 = mul R2 R3
 R5’= mul R2 R3
 R0 = cmp R5 R5’
 br R0, BB3, BB4

BB0
 R1 = add R2 R3
 store R1 R4
 R5 = mul R2 R3
 store R5 R6

BB3
 errorDetect()

BB4
 store R5 R6

BB0
 Buff = true
 R1 = add R2 R3
 R1’= add R2 R3
 R0 = cmp R1 R1’
 Buff = and Buff R0
 store R1 R4
 R5 = mul R2 R3
 R5’= mul R2 R3
 R0 = cmp R5 R5’
 Buff = and Buff R0
 store R5 R6

BBn
 errorDetect()

original program

program with EDDI
program with Celer

EDDI introduces extra
basic blocks!

Celer maintains
program control-flow!

Celer: Accelerating EDDI Performance

■ Celer reduce more than 99% extra dynamic basic blocks in EDDI.

■ On average, Celer improve EDDI runtime performance by 25%.

EDDI Runtime Performance between EDDI and Celer

RPO denotes “runtime performance overhead”

Summary

■ EDDI runtime performance varies across both programs and inputs.

■ 6 factors dominantly contribute to such variations.

■ FuzzyB efficiently bound EDDI runtime performance across different inputs.

■ Celer can accelerate EDDI runtime performance by 25%.

■ Open source: https://github.com/hyfshishen/ISSRE23-FUZZYB-CELER

Yafan Huang
University of Iowa
yafan-huang@uiowa.edu
https://hyfshishen.github.io

https://github.com/hyfshishen/ISSRE23-FUZZYB-CELER
https://hyfshishen.github.io/

