ISSRE 2023

Florence, Italy

Characterizing Runtime Performance Variation
in Error Detection by Duplicating Instructions

Yafan Huang*, Zhengyang He*, Lingda Li, Guanpeng Li

(f\ Brookhaven

National Laboratory

Soft Error

m Soft error is becoming prevalent in modern processors.

m Soft error may lead to severe failure outcomes, hence should be mitigated.

a-particle

error

soft error)
propagation

N 0000 *—» 0010

- - diffusion
N+
-

(1 i substrate

[1] https://labs.enqgineering.asu.edu/mps-lab/research/error-resilience/

https://labs.engineering.asu.edu/mps-lab/research/error-resilience/

Software Solutions

m Software solution is more flexible and cost-effective.

_— ——
Application Level

Operating System Level

Architectural Level

Protection Overhead
Decreasing

Device/Circuit Level * soft error

impactful errors

Error Detection by Duplicating Instructions (EDDI)

m EDDI duplicates instructions at compile-time and detects errors at run-time.

m Compiler-level transformation, hence program-agnostic.

C C'
1 X
D D'

\/—‘

{ Checker] D=D"?

normal execution

N\

report errors!

Original instruction
Duplicated instruction

Functional instruction
(e.g. comparision, jump)

Argos Project!!

[1] Strategies for fault-tolerant, space-based computing: Lessons learned from the ARGOS testbed

Motivation: Runtime Performance Variation in EDDI

m EDDI runtime performance varies a lot across different programs.

m From 8% on FFT2 to 203% on LBM benchmarks.

m Understanding performance variation is important to real-time systems.

m Therac-25 accidents!™ 1985~1987, due to unscheduled subcomponents.

m This is the first work for studying EDDI runtime performance.

P e T N ™ \
© N
2150% T A ‘ ‘
8 100% 195% A ' SFTHE
a : ; THERAC-25
 50% d T

H I—I H H I_I H H o 9 L ACCIDENTS
[_] H 1_1 '_l e [RASCINATjING. HORROR

0%

\\0\® Q((e.(\c’\ & %’b <\° \Q’%

+9Q & S
3 &

U <Y @C?\Orb‘?fQN .‘ p
& Qﬁ& NP 9 i

%\‘\(\ Roox
[1] An investigation of the therac-25 accidents

Goal

m Goal: characterize and understand performance variation of EDDI.

m . Identify root-causes that affect EDDI the most.
A comprehensive correlation study.

m G2: Assist system-designers to develop safe and performant EDDI.

L Two techniques: FuzzyB and Celer.

: ® Machine Learning
EXperImentaI Setu pS ® Graph Algorithm
Biology
® Dynamic Programming
® Linear Algebra
® Signal Processing
® Molecular Dynamics
©® Monte Carlo Process

m Platform
m Ubuntu 20.04 OS.

m Intel Corei7-10700 processor.
m 64 GB RAM.

Finance

©® Parallel Computing
» Stencil Operation

Benchmark Application Domains
m Benchmarks

m 22 open-source benchmarks. :
P - e S0l b Baonna, [0
m EDDI Implementation /
. Fortran | llvm-gcc Frontend Lli_V?: > bow LLVM —» PowerPC
m LLVM transformation passes. P i
m Full duplication. Heskell >4 GHOFromerd | - ARM Barend | ARM

LLVM Compiler Infrastructurel'

[1] https://llvm.ora/

https://llvm.org/

Correlation Study: Methodology

m Correlation Study

m How strong two arrays are related to each other.

m EDDI runtime performance and target factor.

m [1, 1], where |cor| > 0.3 can be seen as correlated!'].

m Target Factors

m 10 program-level factors

m 12 -level factors
m Profiling Tools

m Architecture-level: Linux Perf

m Program-level: LLVM passes

[1] Scatterplots and correlation, 2017

2. (2 =) (y: — 9)

. VI (@i - 22 (y; — 9)°

Pearson Correlation Coefficient

Program-level factors
dynamic instructions
fp binary operators

int binary operators
logical binary operators
basic blocks

Branch

L1 dcache loads

L1 icache load misses

L2 cache instruction hits

L2 cache instruction misses
LLC loads

LLC stores

Correlation Study: Results

Factor Category Description Measurement tool Correlation
Dynamic-instructions Instruction Dynamic instruction count. Compiler instrumentation 0.69
Standard-binary-operators Instruction Standard binary instruction (e.g FAdd, Add) count. =~ Compiler instrumentation 0.44
Floating-point-binary-operators Instruction Floating-point binary instruction (e.g FAdd) count. ~ Compiler instrumentation 0.39
Integer-binary-operators Instruction Integer binary instruction (e.g Add) count. Compiler instrumentation 0.23
Logical-operators Instruction Compiler instrumentation -0.02
Cast-operators Instruction S Pr ogr. am-level Compiler instrumentation
Cmp-operators Instruction 2 D) coulit. Compiler instrumentation 0.04

Basic-blocks

Branch

Branch-misses
L1-dcache-loads
L1-dcache-stores
L1-dcache-load-misses
L1-icache-load-misses
L2-cache-instruction-hits
L2-cache-instruction-misses
L2-cache-data-hits
L2-cache-data-misses
LLC-loads
LLC-load-misses
LLC-stores
LLC-store-misses

Instruction
Instruction

Instruction
Cache/mem
Cache/mesfiory

Cache/memory
Cache/memory
Cache/memory
Cache/memory
Cache/memory
Cache/memory
Cache/memory
Cache/memory
Cache/memory
Cache/memory

Cache/memory: Architectural

L1 data cache load count.
L1 data cache store count.
L1 data cache load miss count.

L1 instruction cache miss count.

L2 cache instruction fetch hit count.
L2 cache instruction fetch miss count.
L2 cache data request hit count.

L2 cache data request miss count.

L3 cache load execution count.

L3 cache load miss execution count.
L3 cache store execution count.

L3 cache store miss count.

Compiler instrumentation

Linux profiler Perf
Linux profiler Perf
Linux profiler Perf
Linux profiler Perf
Linux profiler Perf
Linux profiler Perf
Linux profiler Perf
Linux profiler Perf
Linux profiler Perf
Linux profiler Perf
Linux profiler Perf
Linux profiler Perf
Linux profiler Perf
Linux profiler Perf

Not consider due to

limited usage!

m We found 6 factors (5 + 1) that are correlated with EDDI performance variation.

Correlation Study: Summary

m 6 factors (5 + 1) that are correlated with EDDI performance variation.

m Two techniques to assist the usage of EDDI in real-world applications:

m FuzzyB: bounding EDDI performance variation with the identified factors.

m Celer: accelerating EDDI performance with optimized program control-flow.

BB0
Ri= agg R2 R3
R1’=add R2 R3
Ro = cmp R1 RY Ll
br Ro, BBI, BB2 R1=add R2 R3
R1’=add R2 R3
Program . BBI Ro = cmp R1RY’
Source Code 3 Fitness Score 50 errorDetect() StoroRLR
EDDI 5%) Ri=addR2R3 | |BB2 e e
Transf go : store R1 R4 store R4 R5 RoSMIIR2IRSS
ransform. %,) Time Input . R5 = mul R2 R3 Rs ~ mul R2 R3 Ro = cmp R5 R5
Code Manager . Fitness store R5 R6 R5’= mul R2 R3 R
with EDDI Searchmg ¥ RO = R b store R5 R6
; Evaluation = cmp R5 R5
Mutator | Engine br Ro, BB3, BB4
ECPI Generated .
Profilin, Input BB3
- l errorDetect() BBn
EDDI RPO-Bound Input errorDetect()
BB4
store R5 R6

FuzzyB Workflow
Celer Example

FuzzyB: Bounding EDDI Performance Variation

m EDDI performance not varies across benchmarks, but also across inputs.
m From 7% in Xsbench to 68% in Needle.
m Fuzzing technique can locate input with a certain feature.

m 6 identified factors contribute dominantly to such feature.

68%
$070% 2

& 56% |

342%

28%

eyt

Mléofl Il7/°l II-IIl

<
CO§I\O \(.% &CC’ \-e *éoe ‘é ﬂ’&e QQ Qqﬁ \)?) 'ﬂogoxs\ae e&e Q)Q

EDDI Performance Variation across Different Inputs

FuzzyB: Bounding EDDI Performance Variation

Program .
Source Code Fitness Score
EDDI WP E 2 ! Lo
38 L e Fitness; = —=RPO; + = Z —7% —~|Factory;
Transform. | ¢ & i 2 2 £ K (G
o 8 Time Input k=1 £vj=1
Code = || Manager Searzhing | Fitness
with EDDI | /2 Mutator | Engine Evaluation each identified factor
. Generated
Profiling l Input
Target Input

upper bound

m Input searching engine: a fuzzing-based technique to bound EDDI performance
within a certain number of iterations.

guide searching

engine
m Fitness score: 6 identified factors weighted by softmax function.

FuzzyB: Bounding EDDI Performance Variation

120%
105%
90%
75%
60%

36%

/

%

50 100 15(
(a) CoMD

AN
g\\‘\\\\\\i
Sm

2

50 100 150 200
(e) LUD

50 100 150 200
(i) Myocyte

50 100 150 200
(m) Backprop

AN
AN
AN

%
50 100 150 200
(b) kNN

nnn
50 100 150 200
(f) Xsbench

7 7z
‘A/’4 '8
50 100 150 200
(j) FFT

50 100 150 200
(n) Pathfinder

50 100 150 200
(c) HPCCG

46%
44%

I\
AW
Y
IO

7
%

50 100 150 2
(g) Blackscholes

=

0

50 100 150 200
(k) FFT2

7
.
50 100 150 200

(0) Needle

NN
AN
NN

42%

132%
128%
124%
120%

210%
207%
204%

16%
14%
12%

(1) LBM

50 100 150 200
(p) BFS

Bounding EDDI performance with FuzzyB (left) and Random Fuzzer (right)

m FuzzyB bound higher EDDI runtime performance with fewer iterations.

Celer: Accelerating EDDI Performance

m Can we let EDDI run faster?

m 6 identified factors:

m dynamic instructions ~

m stdbin operators

m fpoperators -

m cast operators ~

= basic blocks - program control-flow
m L1 dcacheloads — and basic blocks

m Accelerating EDDI runtime performance by reducing number of basic blocks.

Celer: Accelerating EDDI Performance

BB0
R1=add R2R3
store R1 R4
R5 = mul R2 R3
store R5 R6

original program

BBo0
R1=add R2 R3
R1’= add R2 R3
Ro = cmp R1RY
br Ro, BB1, BB2

— .

BBI BB?2
errorDetect() store R4 R5
R5 = mul R2 R3

; R5’= mul R2 R3
EDDI introduces extra RO = cmp R5 R5’
basic blocks! ‘yg‘

BB3 BB4
errorDetect() store R5 R6

program with EDDI

Celer maintains
program control-flow!

BB0

R1=add R2R3
R1’=add R2 R3
Ro = cmp R1 R’

store R1 R4

R5 = mul R2 R3
R5’= mul R2 R3
RO = cmp R5 R5’

store R5 R6

BBn
errorDetect()

program with Celer

m Celer does not increase basic block via simplifying control-flow with a buffer.

m Celeris a variant of EDDI without any losses of soft error detection effectiveness.

Celer: Accelerating EDDI Performance

RPO denotes “runtime performance overhead”

200%] D EDDI

150% JCELER
o
50% 1 01 -16.27% H_‘ |—H 3.289 H“
050
00/0 |—l / |_]_| m El—l %Z \)

o N\O Y CC “ee D {\a“x\o\es ke Y 991\4 ‘o?bf\&eé odle v,? N\C’S’@“& v ¥ eaﬂ \)bweta%

xsbe

EDDI Runtime Performance between EDDI and Celer

m Celer reduce more than 99% extra dynamic basic blocks in EDDI.

m On average, Celer improve EDDI runtime performance by 25%.

Summary

m EDDI runtime performance varies across both programs and inputs.

m 6 factors dominantly contribute to such variations.

m FuzzyB efficiently bound EDDI runtime performance across different inputs.
m Celer can accelerate EDDI runtime performance by 25%.

m Open source: https://github.com/hyfshishen/ISSRE23-FUZZYB-CELER

Yafan Huang

University of lowa
yafan-huang@uiowa.edu
https://hyfshishen.github.io

Q’.‘ Brookhaven

National Laboratory

https://github.com/hyfshishen/ISSRE23-FUZZYB-CELER
https://hyfshishen.github.io/

