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Abstract—This paper proposes D2MON, a data-driven real-
time safety monitor, to detect and mitigate safety violations
of an autonomous vehicle (AV). The key insight is that traffic
situations that lead to AV safety violations fall into patterns
and can be identified by learning from existing safety violations.
Our approach is to use machine learning techniques to model
the traffic behaviors that result in safety violations and detect
their symptoms in advance before the actual crashes happen. If
D2MON detects surroundings as dangerous, it will take safety
actions to mitigate the safety violations so that the AV remains
safe in the evolving traffic environment. Our steps are twofold:
(1) We use software fuzzing and data augmentation techniques
to generate efficient safety violation data for training our ML
model. (2) We deploy the model as a plug-and-play module to
the AV software, detecting and mitigating safety violations of
the AV in runtime. Our evaluation demonstrates our proposed
technique is effective in reducing over 99% of safety violations
in an industry-level autonomous driving system, Baidu Apollo.

Index Terms—Autonomous Vehicles, Safety-Critical Applica-
tions, Machine Learning, Software Fuzzing

I. INTRODUCTION

The development of autonomous vehicles (AVs) is recently
at a booming speed, which attracts massive research attention
from both academia and industrial companies such as Tesla
and Waymo. However, current AV products still face many
safety issues. For example, in the accident report of L2
driver assistance systems released by NHTSA in June 2022,
367 accidents caused by AVs happened from May 2021 to
June 2022 [1], leaving extreme hazard on human lives and
properties. Therefore, enabling AV safety has become a crucial
task in the reliability research community.

Traditional methods to improve AV safety are through
massive testing processes either on the road or in simulators.
The search process involves AV under test in an evolving
traffic scenarios and observes if the AV will reveal any safety
violations [2]–[4]. However, these methods have two critical
defects: (1) They are designed to minimize the risky scenarios
that an AV may face and fail to guarantee safety when
accidents are going to happen. (2) Deploying these methods is
exceedingly labor-intensive and time-consuming. Specifically,
in the AV testing phase, developers have to spend massive
amounts of time finding safety violation cases and localizing
the corresponding bugs in large code bases. Besides, such
modifications to code may change the original internal logic
and even introduce new bugs, incurring extra testing efforts.

To tackle these challenges, we propose a Data-Driven AV
safety monitor D2MON which can automatically detect and
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Fig. 1. Mitigating safety violations with AV safety monitor.

mitigate safety violations of an AV without requiring devel-
opers to modify any code. Figure 11 explains the general idea
of how D2MON cooperates with an AV in a cut-in scenario.
D2MON evaluates real-time risks in the surrounding of the AV
and hence determines its later actions. Once a nearby NPC
(the vehicles on the road other than AV) tries to perform a
dangerous action (e.g. cut-in), the safety monitor can detect
current surroundings as “danger” and alerts AV to brake in
the next time step to avoid such a safety violation. Besides,
D2MON is a complete independent module and parallel to
Autonomous Driving System (ADS). Such plug and play
design principle significantly reduces the time cost compared
with existing human-supervised solutions.

The contributions of this work are presented as follows:
• We propose a data-driven AV safety monitor D2MON

by combining software fuzzing and machine learning
(ML) techniques. The key insight of D2MON is that
an AV can learn from past AV-at-fault accidents and
then evaluate the risk of current surroundings. In light of
this, we first extract features from those accidents, and
then transfer these features to low-dimensional vectors.
To process such vector data effectively, we propose a
network structure with a sequence-to-sequence (Seq2Seq)
model and several fully-connected layers. Seq2Seq is
an encoder-decoder framework that takes series vectors
as inputs and generates an output vector with similar

1We refer the definition of AV-at-fault accident to Section III.



length, while fully-connected layers can further enhance
model’s fitting capability. Software fuzzing technique is
also adopted to localize AV-at-fault accidents (i.e. training
data for ML model) with a low cost.

• We design a flexible framework to create and deploy
the safety monitor D2MON into an AV. Creating the
safety monitor D2MON can be conducted totally offline,
which indicates this overhead is just a one time cost.
Deploying D2MON technique just needs to link two
independent components (safety monitor and mitigator)
to an AV.

• We conduct comprehensive experiments to evaluate
the prediction accuracy and accident mitigation effi-
ciency of D2MON. We first analyze the prediction accu-
racy of the ML-based monitor, including the sensitivities
of false positive (FP) and false negative (FN) to the user-
defined threshold. We traverse the threshold from 0 to 1,
finding an optimal value of this threshold. This threshold
will be utilized in D2MON to judge whether the AV
is in a dangerous state. Then, we evaluate the accident
mitigation efficiency of D2MON. We evaluate two AVs
with and without D2MON technology, respectively. In
500 trials, the AV without D2MON causes 313/500 AV-
at-fault accidents, while the other AV with D2MON
equipped causes only 3/500 AV-at-fault accidents.

The rest of this paper is organized as follows: In Section
II, we introduce the background knowledge of this work. In
Section III, we present the detailed design of our proposed
D2MON. In Section IV, we evaluate this work from two
perspectives: the prediction accuracy and accident mitigation
efficiency. Finally, we conclude this work in the last section.

II. BACKGROUND

In this section, we briefly introduce the background knowl-
edge of AV safety, including the autonomous driving system,
high-fidelity simulator, fuzzing technique, and sequential data
processing algorithms.

A. Autonomous Driving Systems

The autonomous driving system (ADS) is a decentral-
ized and highly collaborative combination of all AV-related
software and hardware [5]. AVs utilize autonomous driving
system (ADS) technology to replace human driving [6]–[8].
A modern ADS infrastructure consists of a sensor layer and
six modules [9], which can be listed as below.

Sensor Layer contains several sensor units such as IMU,
GPS, camera, Radar, and Lidar. These sensors can provide raw
data such as pictures, point clouds, GPS locations, etc. All the
generated data will be sent to and processed by later modules.

Localization Module obtains the current position informa-
tion of the vehicle by processing the coordinate system in
the high-definition map, GPS information, and the point cloud
provided by the Lidar, etc.

Perception Module processes the raw data through hard-
ware such as cameras and Lidars carried by the vehicle itself,

including data pre-processing (deep learning model) and post-
processing. This module can obtain obstacle, lane line, and
traffic light information around the vehicle.

Prediction Module obtains the information of obstacles
around the vehicle through the perception module and the
positioning module and predicts the running trajectory of
these obstacles. Those trajectories will be sent to the planning
module for calculation for avoiding potential obstacles.

Routing Module calculates the long-term travel route of
the vehicle based on current vehicle position, a high-fidelity
map, and the destination provided by user.

Planning Module navigates the short-term route, such as
avoiding obstacles and following traffic lights, by obtaining
the location information and other surrounding environment
information provided by other modules.

Control Module is based on the instructions from Planning
and Routing modules. It also connects the vehicle hardware,
steering wheel, accelerator brake, and other city and county
controls of the vehicle through the CAN bus.

Baidu Apollo [9], which is one of the most advanced ADSs
in the industry [9]–[11], has gone through 7 iterations since its
first official release in 2017, yet has implemented a relatively
complete functionality. As Baidu Apollo has been commonly-
used in this literature, we use its popular branch Apollo 3.5
in this work.

B. LGSVL Simulator

LGSVL (LG-Silicon Valley Lab) [12] is a real-time sim-
ulator (shown in Figure 2) based on Unity engines and
completely simulates our experiments. It can simulate the
cars, environments, and traffic participants in real-time. By
linking this simulator and ADS through a bridge, LGSVL can
return the information of AV driving status, such as speed,
position, and steering angle. The ego car’s action in LGSVL
simulator can also be controlled by Python API. In this work,
we first build the bridge between LGSVL and Apollo, then
run the Python APIs provided by LGSVL to navigate ego
car. The emergency braking function used in D2MON is also
implemented on this API.

Fig. 2. Illustration of LGSVL simulator (left) and Baidu Apollo ADS (right).

C. Software Fuzzing and AV-FUZZER

Originated from an operating system academia project [13],
software fuzzing has been well studied and widely recognized
in test case generation and software vulnerability detection
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Fig. 3. D2MON creation workflow, where FCL in ML Model indicates fully-connected layers.

in the past years [14]–[18]. By utilizing searching algorithms
such as genetic algorithm during the software testing phase,
researchers can localize vulnerable cases and hence boost the
application.

AV-FUZZER [4] is the first work to use software fuzzing
technique in AV safety to find AV-at-fault accidents with high
efficiency. AV-FUZZER is based on meta-heuristic algorithms
and implements a genetic algorithm to find NPC control
instructions that may lead to AV-at-fault accidents. The reasons
we utilize AV-FUZZER to generate training data are threefold:
(1) Parameters such as initial seed, number of NPCs, and
initial locations of AV can be highly-customized in AV-
FUZZER. (2) AV-FUZZER is implemented on LGSVL and
Baidu Apollo, which are compatible with our testing envi-
ronments. (3) Compared with random fuzzing technique, AV-
FUZZER has a unique fitness function and mutation strategy
that can significantly speed up finding the safety violation
cases. As a result, we use AV-FUZZER as a black box to
generate efficient training data for D2MON with a relatively
low cost.

D. Sequence Data Processing

There are many techniques to process sequence data such
as moving-average and exponential smoothing. Among those
methods, recurrent neural network (RNN) -based models [19]
are the most popular methods since their temporal sequence
structures can capture more latent information in series.
As a branch of RNN-based models, sequence-to-sequence
(Seq2Seq) [20] transfers one sequence into another sequence.
It does so by use of RNNs (usually LSTM [21] or GRU [22])
as encoder and decoder. The encoder turns each input item
into a corresponding hidden encode state, while the decoder
reverses the process and turns this hidden state to sequence
data again. Since our designed AV safety monitor predicts
current surroundings by history information, usually time-
series data, we utilize an LSTM-based Seq2Seq model as the
main structure of D2MON.

III. METHODOLOGY

We present the detailed design of D2MON in this section.
In this work, we detect and analyze AV-at-fault accidents since
we can only mitigate AV’s behaviors and cannot control other
traffic participants (i.e. NPCs). AV-at-fault accident is defined
as those accidents when AV’s head collides the NPC’s rear
bumper, in which AV bears the primary liability. Generally,
this work can be divided into two parts: D2MON Creation

and D2MON Deployment. The first part presents how an
ML-based safety monitor is created, while the second part
introduces how to integrate this safety monitor into a running
AV and hence mitigate AV-at-fault accidents. Note that all data
collection and model training in this section can be executed
offline, which also indicates these processes are just one-time
costs.

A. D2MON Creation

Figure 3 shows a high-level workflow of the creation process
of D2MON. Starting from selecting the original random seed,
the selected seed will be set as the initial status and sent to AV-
FUZZER to generate a certain number of AV-at-fault accidents.
Then, a K-Means clustering algorithm is utilized to generate
labels for those accidents. We also perform data augmentation
for each type of clustered accident to enlarge the dataset with
confidence. Finally, the generated dataset will be fed into our
proposed ML model, which is also the core part of D2MON,
for real-time reasoning.

1) Seed Repository: Our safety monitor starts with the
random selection of seeds. Seed concept is recognized as the
initial status of software fuzzing. Specifically, a seed usually
contains surrounding NPC speeds and their turning commands.
In random selection phase, for example, the speed range can
be selected within 0∼30 miles/hour, and the turning command
is randomly generated from 0 to 2, where 0 = stay in the same
lane, 1 = turn left, and 2 = turn right).

2) Fuzzing Engine: The randomly selected seeds will be
taken as input to the AV-FUZZER. We also need to configure
the AV-FUZZER as the instruction such as the liability judg-
ment, fitness function, etc. AV-FUZZER continuously mutates
the given random seed through the genetic algorithm and
continuously improves the fitness score for the scenario to find
AV-at-fault accidents. Compared with other fuzzing techniques
such as random fuzzing, AV-FUZZER can generate more AV-
at-fault accidents with only a few time costs (within only 10
hours), which is also a one time cost.

3) Data Discriminator: Data discriminator is designed
to label AV-at-fault accidents that are generated from AV-
FUZZER, so that they can be used for ML model training.
To discriminate the labels of data, we cluster all the AV-at-
fault accidents by K-Means algorithm. For each cluster, we
consider that this class is AV sensitive at fault accident.

4) Data Augmentation: After we complete the clustering,
we perform data augmentation for each category (i.e. data with
the same label) The purpose of this is to find as many NPC



trajectories that are similar to this cluster as possible, including
seeds that can cause NPC at fault accident, or seeds that almost
cause NPC at fault accident. The key observation is that AV-
at-fault accidents are very sensitive to a nearby NPC speed.
Thus, for each category, we randomly add or reduce the NPC
speeds by ten percent and generate more raw data with very
high probabilities (> 70%) to cause accidents. All the raw data
will be rechecked in the LGSVL simulator. We also record the
NPC and EGO statues every 0.25 seconds, for speed, steering
angle, and location. In this way, more convincing data can be
generated and trained by the ML model so that the prediction
accuracy can be improved.
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Fig. 4. The network structure of ML model, which is also the key component
of AV safety monitor D2MON.

5) ML Model: The key component of AV safety monitor
D2MON is to use the ML model to evaluate real-time sur-
rounding risks. The ML model is a classifier to conduct such
computations. If the output of D2MON is larger than a user-
set threshold (i.e. a hyperparameter in Section IV), it will
be predicted as “dangerous”. Figure 4 presents the network
structure of this ML model. Specifically, this model consists
of two components: a sequence-to-sequence (Seq2Seq) model
and fully-connected layers (FCLs). The Seq2Seq is composed
of two LSTM-based encoder and decoder and hence is good
at processing time-series data. FCLs are introduced to further
improve fitting capability. The output of this model is the
predicted results (i.e. safety or not) of the input time slot. We
will evaluate the prediction accuracy in the following section.

B. D2MON Deployment

Figure 5 presents how we deploy D2MON to an AV to
mitigate real-time AV-at-fault accidents. After the training
process of the ML model is complete, it can be offloaded
to an AV for later use. When AV starts running, D2MON first
collects 1.25 seconds of data as the initial input. Such a cold
start cost is very small and can almost be neglected. Then,
D2MON will collect the real-time surrounding information and
perform inference through the ML model every 0.25 seconds.
This data can be stored with a user-defined period for later
possible posthoc analysis. Each cluster has an independent
model, and all the models are contained in the D2MON
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Fig. 5. D2MON deployment. D2MON refers to ML-based safety monitor.

mitigator and will be inferred parallelly while AV is running.
Once the predicted value from any cluster is higher than the
threshold, we will activate the mitigator for the mitigation.
we take over the control of the current AV in the simulator
and conduct a maximum AV braking (Emergency Brake)
command by predefined Python API. These operations will be
performed again after restarting AV. As shown in Figure 5, the
deployment of D2MON includes the ML-based safety monitor
and mitigator, which are independent of ADS in an AV. As
a result, our technique can be configured very flexibly and is
easy to use.

IV. EVALUATION

In this section, we present the evaluation for D2MON.

A. Experiment Settings

1) Machine Specification: Our experiments were conducted
on an Ubuntu 18.04 machine with 32GB RAM. This machine
is also equipped with an AMD 5900X CPU (12-core/24-
thread) and an NVIDIA GTX 1080 Ti GPU card.

2) Driving Environment Setup: For ADS and high-fidelity
simulator, Baidu Apollo 3.5 and LGSVL linux-64-2021.3 were
used in our experiments. We used a simple 2-lane map of
LGSVL for the map selection and the vehicle configuration
was also built into the simulation. We started with AV-
FUZZER. Given a random seed, we fuzzed 10 hours by AV-
FUZZER, and 9 AV-at-fault accident trials were found. We
recorded the NPC behaviors and adopted K-Means algorithm
to automatically classify them into two clusters. Data augmen-
tation is also conducted on these two clusters, respectively.
Each class ran out of 500 AV-at-fault accidents in this stage.
The detailed settings of the ML model training will be
presented in the later section.

B. Evaluation Metrics

There are three metrics for evaluating D2MON in mitigating
AV-at-fault accidents. The calculation formula and descriptions
can be found in Table I. To evaluate the prediction accuracy,
we adopt false positive (FP) and false negative (FN) values.
The lower the better. The reason is that both these two
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Fig. 6. Evaluation of D2MON. In (c), “AV1” represents “AV with D2MON ” and “AV2” represents “AV without D2MON ”.

types of faulty predictions can lead to severe results in real-
world scenarios. To evaluate the overall accident mitigation
efficiency, we adopt a fault rate. The lower the fault rate, the
more accidents the AV can avoid.

TABLE I
EVALUATION METRICS

Metrics Formula Descriptions

FP Val. (False
Positive)

(FP Case) / (Total Case) FP: Predict the safe situa-
tion as dangerous.

FN Val. (False
Negative)

(FN Case) / (Total Case) FN: Predict the dangerous
situation as safe.

Fault Rate (%) (Fault Trial) /
(Total Trial)

Number of trials that leads
to accidents.

C. Prediction Accuracy

Before we present the prediction accuracy, we first present
the related settings. Back to the data augmentation phase in
D2MON creation workflow, we collected nearly one thousand
trials of AV-at-fault accidents or other actions for each cluster.
If one trial is very close to an accident but finally executes
in normal, we define it as a close trial. On the one hand, we
use 400 AV-at-fault accident trials, 200 close trials, and 200
random trials for training the ML predictor for each cluster. On
the other hand, we use another 100 AV-at-fault accident trials,
50 close trials, and 50 random trials for testing. We balance
the training and testing data to obtain a higher prediction
accuracy and a fair evaluation, respectively. We decompose
each trial into several sliding windows. There are 20 timeslots
in each trial. The first 5 timeslots are the model input (i.e.
cold-start stage) for D2MON, while the output is the safety
prediction for the later 8 timeslots. Since timeslot has a 5
dimension feature, the input is a 5× 5 matrix. The output of
the ML model is an 8 dimension vector, where each number in
this vector represents a safety prediction for its corresponding
timeslot. Specifically, this predicted number is a floating-
point number between 0 and 1. We set a hyperparameter
threshold for each cluster here. If this number exceeds the user-
defined threshold, the corresponding timeslot will be regarded
as dangerous, otherwise safe. False positive: If any of the 8
predicted numbers exceeds the threshold and the ground truths

of them are all 0, such will be recorded as a false positive
case. False negative: If all of the 8 predicted numbers do not
exceed the threshold while there is one number or more has a
ground truth 1, such will be recorded as a false negative case.
For each cluster, we traverse the thresholds from 0 to 1 and
choose a value that can lead to the smallest FP+FN rate. Such
an optimized value will be selected for inference in the ML
model. If one ML model of any cluster evaluates NPC actions
in the current surrounding as dangerous, the message will be
sent to the mitigator. And D2MON will take over control from
ADS and conduct an emergent brake.

Figure 6(a) and 6(b) presents the ML prediction results
for these two clusters. For cluster1, the FP keeps at a slow
value (< 0.1) when we traverse the threshold from 0 to 1.
The FN is small when the threshold is close to 0, but it
increases rapidly when this threshold is larger than 0.6. We set
the threshold as 0.21 to obtain a minimum FN+FP, of which
FN and FP are 0.0061 and 0.0167, respectively. The curves
in cluster2 have similar trends. We then set the threshold as
0.265 to minimize the value of FN+FP, of which FN and FP
are 0.0405 and 0.0118. We can know that our ML models can
achieve promising prediction accuracy for both clusters when
optimized thresholds are selected.

D. Accident Mitigation Efficiency

In this section, we evaluate the AV-at-fault accident mitiga-
tion efficiency of D2MON, including the AV safety monitor
and the mitigator. Because 2 clusters obtained the data discrim-
inator phase in the D2MON creation workflow, we also collect
data from 2 clusters. For each of these 2 clusters, we use AV-
FUZZER to get a base trial and perform data augmentation on
each trial. At last there will be in total 500 trials to evaluate the
D2MON accident mitigation efficiency. Because of the speed
settings in data augmentation, all the trials can or are very
likely to lead to accidents.

Figure 6(c) presents the mitigation results. “Type1” and
“Type2” are running AVs with and without D2MON. We let
both of these two AVs run above 500 trials in the LGSVL
simulator and check the results. For AV1, since D2MON is
equipped to detect real-time risks, only 0.6% cases (3 in
500) finally lead to AV-at-fault accidents. For AV2, since no



protection is granted, 62.2% cases (303 in 500) cause accidents
at last. D2MON can detect near 99.01% possible AV-at-fault
accidents, which demonstrates the protection of D2MON is
effective.

V. CONCLUSION AND FUTURE WORKS

In this work, we propose an AV safety monitor D2MON to
detect and mitigate hazards in real-time. D2MON uses a neural
network composed of Seq2Seq and FCLs to evaluate the risks
of surroundings. The creation and deployment of D2MON are
automatic and flexible, significantly reducing the time cost
compared with existing AV protection methods. Evaluation
shows that the ML model is accurate in predicting hazards
and D2MON is effective in mitigating hazards (more than 99%
accident cases) in real-time driving scenarios.

In the future, we will further explore this topic in two
possible directions: (1) accelerating the fuzzing engine, and
(2) optimizing the mitigation strategies.
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