D2MON: Detecting and Mitigating Real-Time Safety Violations in Autonomous Driving Systems

Bohan Zhang Yafan Huang Rachael Chen Guanpeng Li

bzhang22@uiowa.edu vafan-huang@uiowa.edu rchen23@students.d125.org guanpeng-li@uiowa.edu

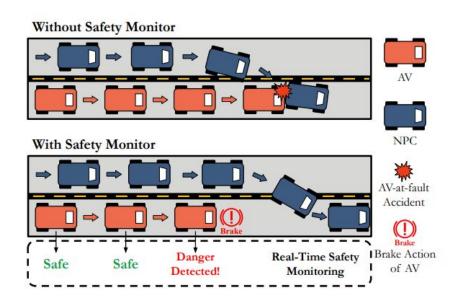
Autonomous Vehicle (AV)

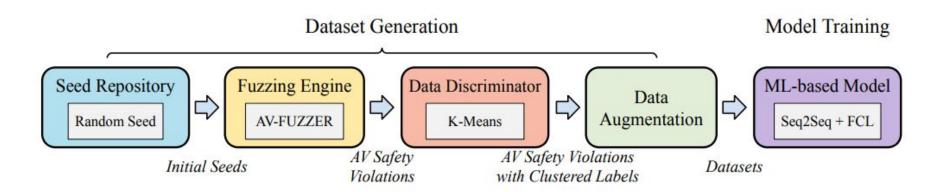
- Every 10 mins, about 26 people will die in automobile accidents globally
 - >94% is drivers' fault that cause the accidents
- AV holds significant potential to improve productivity and quality of life
 - Level-4 autonomous driving system (ADS) requires no human intervention
- By 2019, over 1,400 AVs are in testing by 80+ companies across the US on roads
 - Operate with human-driven cars on public roads
 - Market estimate of AV will reach \$60 billion by 2030

AV Accidents

Existing Methods:

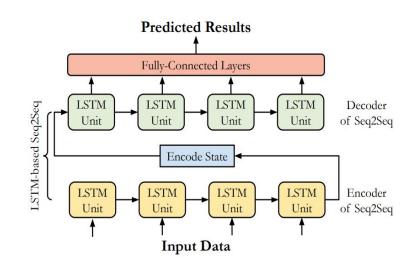
- Road Testing
 - Require million of millages and energy
 - Not efficiency (requrie human to monitoring)


- Simulation-Based Software Fuzzing
 - Hard to localize the error (huge code base, more than 400000 line of codes)
 - Fix one bug may cause more


Our Solution

- Key insights
 - NPC (surrounding vehicle)'s trajectoris
 which will lead the AV safety violations
 fall into identifiable patterns
- ML-based real-time safety monitor
 - Without debugging the code of ADS
 - Real-time dectection for safey violation
 - Mitigation when danger dectected

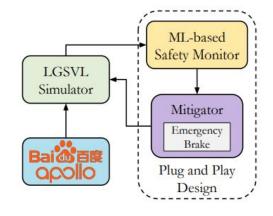
Enable Maxium safety

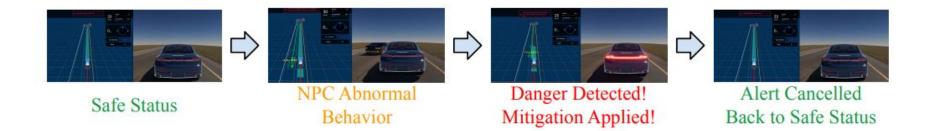

Framework Design: D2MON

ML-Based Model

Input: Past 1.25 second's vehicle running data

- NPC and AV's current speed
- Euclidean distance of NPC and AV's location
- Euclidean distance of NPC and AV's steering angle
- Indicator that judge "is NPC in front of AV?"
-




Output: Safety indicators for next 2 seconds

Deployment of Our Technique

How does the our technique deployed?

How does safety monitor work?

Experimental Setup

Machine Specification:

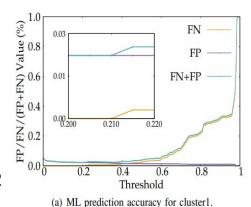
- Ubuntu 18.04 machine with 32GB RAM
- AMD 5900X CPU (12-core/24- thread)
- NVIDIA GTX 1080 Ti GPU card

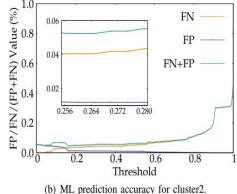
Environment setup

- One npc
- 2-lane straight road

Evaluation: Metrics

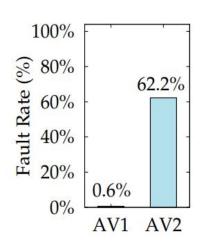
Metrics	Formula	Descriptions
FP Val. (False Positive)	(FP Case) / (Total Case)	FP: Predict the safe situation as dangerous.
FN Val. (False Negative)	(FN Case) / (Total Case)	FN: Predict the dangerous situation as safe.
Fault Rate (%)	(Fault Trial) / (Total Trial)	Number of trials that leads to accidents.


Metrics for evaluate the ML model prediction accuracy


Metrics for evaluate the safety monitor mitigation efficiency

Evaluation: Results

Prediction Accurancy


- FN and FP are 0.0061 and 0.0167 for Cluster 1
- FN and FP are 0.0405 and 0.0118 for Cluster 2

Mitigation Effiency

 AV with D2MON only cause 3 / 500 accidents compare to the AV without D2MON 303/500 accidents

Conclusion & Future Work

- Our goal is to eliminate AV safety violations
 - Proposed a framework for D2MON that able to Creation and Deployment safety monitor
 - NPC's trajectoris which will lead the AV safety violations fall into identifiable patterns
 - ML-based prediction model
 - Enable the maxium AV-safety

- Future work
 - Use better model for improvement of prediction accuracy
 - Updating the mitigation strategy
 - Test more scenario

Backup Slides

Structure of Autonomnous Driving System

Background: LGSVL

- HD-simulator for AV
- Bridging with Baidu Apollo

