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Abstract

With the ever-shrinking size of transistors and increasing

scale of applications, silent data corruptions (SDCs) have

become a common yet serious issue in HPC applications.

Selective instruction duplication (SID) is a popular fault-

tolerance technique that can obtain a high SDC coverage

with low-performance overhead, as it selects the most vulner-

able parts of a program for protection with priority. However,

existing studies of SID are confined to single program input

in the evaluation, assuming that the error resilience of the

program remains similar across inputs, leading to a drastic

loss of SDC coverage from SID when the protected program

runs different inputs. Hence, we proposed Sentinel, an au-

tomated compiler-based framework to mitigate the loss of

SDC coverage. Evaluation results show that Sentinel can

effectively mitigate the loss of SDC coverage (up to 97.00%)

across multiple inputs, which significantly hardens existing

SID techniques.

CCS Concepts: • Software and its engineering → Com-

pilers; • Computer systems organization → Reliability.

Keywords: Error Resilience, Fault Injection, Compiler, High

Performance Computing

1 Introduction

Silent data corruption (SDC) is recognized as one of the most

severe types of soft error as it propagates in program execu-

tion and finally corrupts program output without noticeable

symptoms. Researchers have observed that only a portion of
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Figure 1. Workflow of Sentinel

program instructions are responsible for almost all the SDCs

in a program. Thus, protecting the most vulnerable parts of

the program may be sufficient to achieve high SDC cover-

age with relatively low overhead. In light of this, selective
instruction duplication (SID) has been proposed to mitigate

SDCs in programs [1, 2]. SID chooses the most vulnerable

instructions in a program and duplicates them against SDCs

in the program execution.

However, existing studies in SID often confine themselves

to one program input in the protection evaluation, assum-

ing that the error resiliency of the program remains similar

under different inputs. Nevertheless, we observe that such

assumption cannot always hold, leading to a significant loss

in SDC coverage when a protected program runs with vari-

ous inputs, which seriously compromises HPC reliability in a

production environment. Industry experiences with a similar

view have recently been released, disclosing much higher

SDC rates in their large-scale application executions, even
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Figure 2.Mitigation of losing SDC coverage by Sentinel, compared with the existing SID method (Red bars indicate expected

SDC coverage provided by each technique)

the programs are protected. To tackle this issue, we propose

Sentinel, an compiler-based technique that improves the

overall SDC coverage for SID through static analysis and

dynamic input fuzzing. The experiment results demonstrate

our proposed Sentinel can effectively mitigate the loss of

SDC coverage across multiple program inputs.

2 Design of Sentinel

Figure 1 shows the overall workflow of Sentinel. The core

target of Sentinel is to efficiently identify the vulnerable

instructions across program inputs. Besides SID preparation

steps (➊ and ➋), we leverage the static analysis in Sentinel

to generate the control-flow graph (CFG) for a given program

(➌). With a genetic algorithm search engine (➍) and dynamic

profiling (➎) of the program execution, Sentinel computes

a weighted CFG list for input. The weighted CFG list repre-

sents the unique execution paths under the input and is used

by the fuzzing engine to differentiate the program execution

from all other inputs seen in the past search. In this way,

Sentinel can identify those vulnerable instructions with

fewer inputs, hence requiring much less per-instruction FIs

(➐) to be performed. Then Sentinel re-prioritizes those in-

structions by updating their benefits with the upper bounds

measured among the generated inputs (➑), to let SID pri-

oritize them in the instruction selection phase (➒). Finally,

Sentinel completes instruction duplication and generates

the protected binary of the program.

3 Evaluation

Figure 2 demonstrates the effectiveness of Sentinel in mit-

igating the loss of SDC coverage, by comparing Sentinel

with the baseline (state-of-the-art SID method). As shown in

the figure, the ranges of SDC coverage provided by Sentinel

are much shorter in almost all the benchmarks at every pro-

tection level, compared with the baseline. The lower bounds

of the coverage are much higher than those in the baseline.

Overall, averaging over all the benchmarks at the 3 protec-

tion levels, Sentinel mitigates 97% of the loss of SDC cov-

erage in the existing SID. Another important observation is

that, unlike the baseline, the minimum coverage provided by

Sentinel always increase as the protection level increases

in each benchmark. For example, in kNN, the minimum

coverage provided by Sentinel is 99.54% at 30% protection

level, 100.00% at 50% and 70.00% protection level. In contrast,

the coverage ability of the baseline may decrease unexpect-

edly with increasing protection levels. That is, Sentinel

provides more predictable SDC coverage as the protection

level elevates, which is critical for developers to improve the

software resilience and meet the reliability target. Table 1

examines the percentage of random inputs that still have

SDC-coverage-loss issue when using Sentinel. By checking

the tables, we observe that the percentage of random inputs

that lead to losing coverage turn much lower in Sentinel

than that in the baseline. This shows that in production envi-

ronment, by applying Sentinel, the protected applications

will less likely experience the loss of SDC coverage. For the

time taken to run Sentinel, it takes on average 8.04 hours

to complete the entire process for each benchmark.

Table 1. Percentage of Random Inputs that Result in the

Loss of SDC Coverage in Sentinel

Benchmark 30% Level 50% Level 70% Level

Pathfinder 13.33% 3.33% 3.33%

Needle 3.33% 3.33% 3.33%

Particlefilter 0.00% 56.67% 0.00%

kNN 0.00% 0.00% 0.00%

HPCCG 0.00% 0.00% 3.33%

Average 3.33% 12.67% 2.00%

Average (Baseline) 23.33% 42.67% 44.67%
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