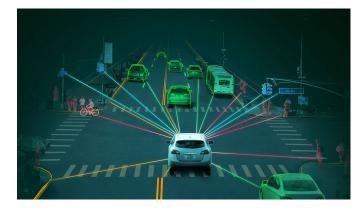
SALUS: A Novel Data-Driven Monitor that Enables Real-Time Safety in Autonomous Driving Systems

Bohan Zhang

Yafan Huang

Guanpeng Li

bzhang22@uiowa.edu


yafan-huang@uiowa.edu

guanpeng-li@uiowa.edu

Autonomous Vehicle (AV)

- Every 10 mins, about 26 people will die in automobile accidents globally
 - >94% is drivers' fault that cause the accidents
- AV holds significant potential to improve productivity and quality of life
 - Level-4 autonomous driving system (ADS) requires no human intervention
- By 2019, over 1,400 AVs are in testing by 80+ companies across the US on roads
 - Operate with human-driven cars on public roads
 - Market estimate of AV will reach \$325.9 billion by 2030
 - Number of AV will reach 33 million by 2040

AV Accidents

NHTSA received 130 AV accidents from 2021-2022

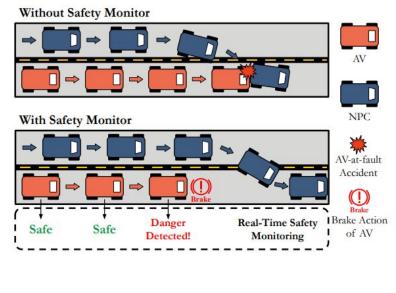
Existing Methods

- Road Testing
 - Require million of millages and energy
 - Not efficiency (requrie human to monitoring)

- Simulation-Based Software Fuzzing
 - Hard to localize the error (huge code base,

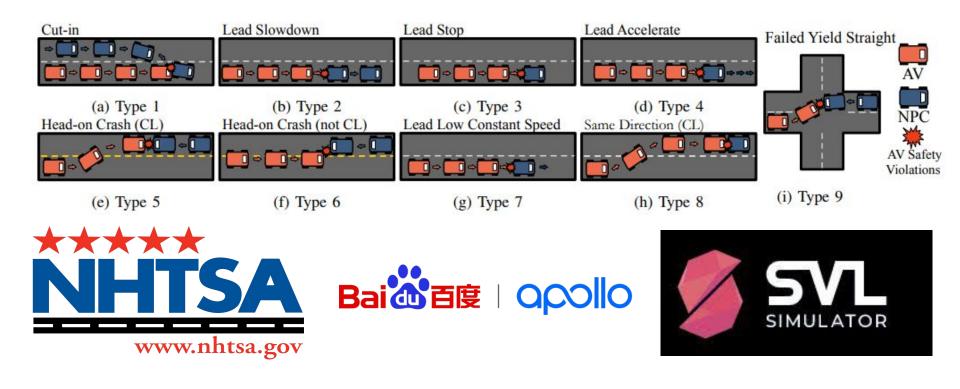
more than 400000 line of codes)

• Fix one bug may cause more


Our Solution

- Key insights
 - NPC (surrounding vehicle)'s trajectoris

which will lead the AV safety violations


fall into identifiable patterns

- ML-based real-time safety monitor
 - Without debugging the code of ADS
 - Real-time dectection for safey violation
 - Mitigation when danger dectected

Initial Study

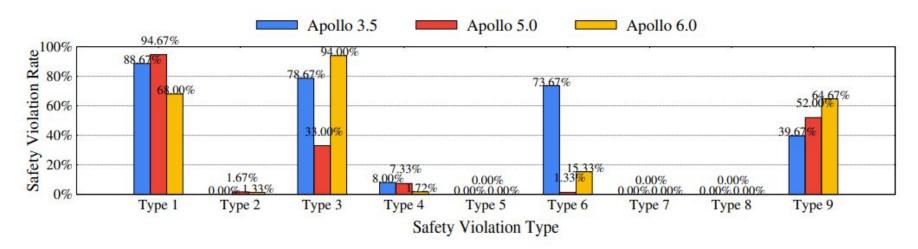
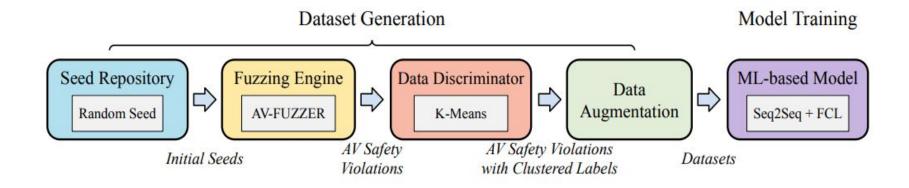
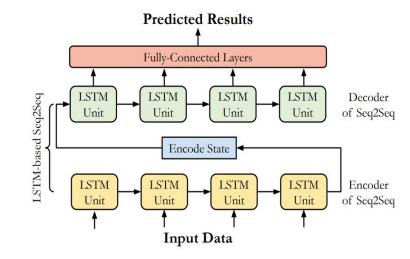



Fig. 5: AV safety violation rates among 9 accident types under three different ADS versions.

Takeaways

- Different ADSs show different vulnerabilities under different safety violation types
- Human driver accidents cannot fully show vulnerability of ADS

Framework Design : Model Creation

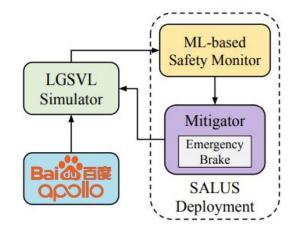

ML-Based Model

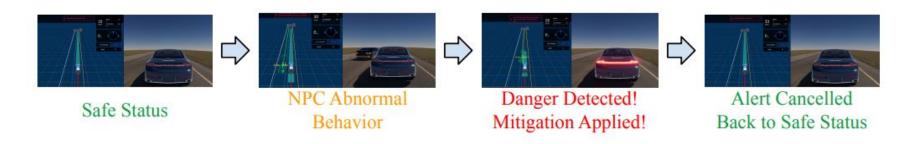
Input: Past 1.25 second's vehicle running data

• NPC and AV's current speed

.

- Euclidean distance of NPC and AV's location
- Euclidean distance of NPC and AV's steering angle
- Indicator that judge "is NPC in front of AV?"




Output: Safety indicators for next 2 seconds

Framework Design : Model Deployment

• How does the model deployed?

• How does safety monitor work?

Experimental Setup

Machine Specification:

- Ubuntu 18.04 machine with 32GB RAM
- AMD 5900X CPU (12-core/24- thread)
- NVIDIA GTX 1080 Ti GPU card

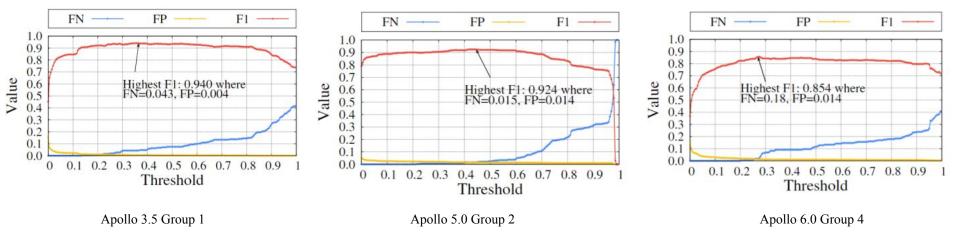
Environment setup

- One npc
- 2-lane straight road

Evaluation: Metrics

• False Negative: (number of FN time slots) / (number of total time slots)

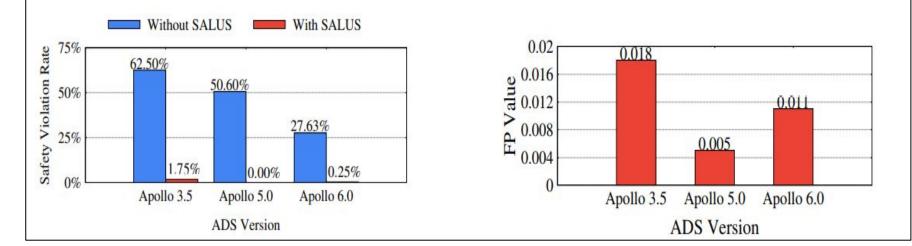
• False Positive: (number of FP time slots) / (number of total time slots)


• F1 Score:
$$F1 = \frac{TP}{TP + \frac{1}{2}(FP + FN)}$$

• Safety Violation Rate: (number of safty violations trials) / (number of total trials)

Evaluation: ML Model Prediction Accuracy

- Test dataset for each group in each ADS:
 - 100 trials will lead to AV safety violation
 - 100 trials will **NOT** lead to AV safety violation
 - 50 totally random trials not lead to AV safety violation



Evaluation: Safety Violation Mitigation Effiency

Test dataset for each ADS

- 200 randomly generated safety violation trials for each group in each ADS
- 200 totally random trials for testing the FP value for each ADS
- SALUS can mitigate more than 97.2% of AV safety violations compared with an ADS without any protection and FP value is less than 0.018

Evaluation: Cross-Validation of Models and ADS Versions

TABLE II: The cross validation of safety violation rates across different models and ADS versions.

	Apollo 3.5	Apollo 5.0	Apollo 6.0
Model for Apollo 3.5	1.75%	6.24%	7.18%
Model for Apollo 5.0	0.00%	0.00%	5.55%
Model for Apollo 6.0	0.75%	0.60%	0.25%

ADS version used their own models perform better

TABLE III: The cross validation of FP values across different models and ADS versions.

	Apollo 3.5	Apollo 5.0	Apollo 6.0
Model for Apollo 3.5	0.018	0.069	0.072
Model for Apollo 5.0	0.027	0.005	0.056
Model for Apollo 6.0	0.086	0.060	0.011

Conclusion & Future Work

- Our goal is to eliminate AV safety violations
 - Inital study shows different ADSs exhibit very different sensitivity to different safety violations
 - Proposed a framework for SALUS that able to Creation and Deployment safety monitor
 - NPC's trajectoris which will lead the AV safety violations fall into identifiable patterns
 - ML-based prediction model
 - Enable the maxium AV-safety

- Future work
 - Accelerating the fuzzing engine in SALUS creating workflow
 - Updating the mitigation strategy
 - Test more scenario