
Mitigating Silent Data Corruption in HPC
Applications across Multiple Program Inputs

Yafan Huang, Shengjian Guo, Sheng Di, Guanpeng Li, Franck Cappello

Soft Error

0 1 0 1 1

0 1 1 1

bit flip

Before

After 0

Logic Values in Hardware

1

[1] https://labs.engineering.asu.edu/mps-lab/research/error-resilience/

[1]

Silicon Decay Cosmic Radiation 2

https://labs.engineering.asu.edu/mps-lab/research/error-resilience/

Soft Errors in HPC

Shrinking hardware technology[1] Increasing HPC system scales[2]

Soft errors are inevitable in HPC

[1] [ToC’2016] A Case for Acoustic Wave Detectors for Soft-Errors
[2] https://github.com/karlrupp/microprocessor-trend-data
[3] [DSN’2014] Lessons Learned from the Analysis of System Failures at Petascale: The Case of Blue Waters

3

https://github.com/karlrupp/microprocessor-trend-data

Error Propagation and Silent Data Corruption (SDC)

Time

Se
ve

rit
y

Error
Occurs! Inactivated Error

Benign Error

Program Crash

Success

Silent Data Corruption (SDC)

The most insidious error
without noticing users!

Error
Activates!

Amazon S3 Incident[1]

Summit Reliability Report[2]

[1] https://aws.amazon.com/message/41926/
[2] [SC’2021] Revealing power, energy and thermal dynamics of a 200PF pre-exascale supercomputer

SDC is an imminent threat to HPC

Program Execution

4

https://aws.amazon.com/message/41926/

● Circuit hardening ● Hardware Duplication

5
Average Worst-case

Wastes power as gap
between average and
worst-case widens due to
variations Guard-band

Hardware duplication (i.e.,
DMR) can result in 2X
slowdown and/or energy
consumption

• In memory: Error Correction Code (ECC)
• In pipeline: Hardware means

Traditional Solutions

Very expensive to deploy in practice.

Selective Instruction Duplication

The cost-benefit curve of SID (Needle)

A B

C

D

E

Store

Store

A’ B’

C’

Checker

Checker

D’

E’

Instruction Sequence

Target Program

Target of SID: Obtaining maximum SDC coverage
under given performance overhead budget.

Knapsack Problem

Performance Overhead Budget

SD
C

 C
ov

er
ag

e

Selective (SID)

6

The cost-benefit curve of SID (Needle)

Performance Overhead Budget

SD
C

 C
ov

er
ag

e

The Problem: Input Variation

● SDC Coverage varies from 0% to 100%.

● Expected SDC Coverage is way too optimistic.

● 37.58% inputs lead to loss of SDC coverage.

9x user-reported SDC[1]

[1] [HotOS’2021] Cores that don’t count.

SDC Coverage Variation of 50 inputs under
30% Performance Overhead Budget

Existing SID

Single Input

Error propagation behaviors in a program across the different inputs remain rather similar.

Assumption

7

Instruction Sequence from SPLASH-2 FFT

Root Causes

● No SDCs under test input, but SDC happens under a different input.

● Input variation changes the program execution behaviors (e.g. control-flow),
hence changes error propagation behaviors of different instructions.

Input A

…
%11 = load i64* %out
%12 = icmp slt i64 %11, 50
br label %13
…

…
%11 = load i64* %out
%12 = icmp slt i64 %11, 50
br label %13
… SDC Prob. = 17%

Need protect.
SDC Prob. = 0%
No need protect.

Input B

Instructions that experience significant variance in
SDC probabilities across different program inputs.

Incubative Instruction

8

Goal and Insights

● Minimize SDC coverage variation.
● Make expected SDC coverage closer

to the most conservative one.

Our Goal:

Identify program inputs that maximize
the control-flow variances.

Key Insights Software
Engineering

Depend-
ability

Input
Fuzzing

Fault
Injection

9

MINPSID: Workflow

Test Input

Program Code Input Search
Engine

Performance
Overhead Budget

Protected Code

(Multi-Input-Hardened Selective Instruction Duplication)

Selective
Instruction
Duplication

MINPSID

10

MINPSID: Our Approach

Per Inst.
FI

Dynamic
Profiling Benefit and Cost Profiling

of Instructions
Re-prioritization of

Incubative Instructions
Knapsack for

Instruction Selection

Code Transformation for
Instruction Duplication

Static Analysis
for CFG

Identification of
Incubative Inst. via

Per Inst. FI
Genetic Algorithm Dynamic Analysis

for Weighted CFG

Input Search Engine for Incubative Instructions Fitness FunctionProgram Code

Performance
Overhead Budget

Benefit

Cost

Test Input

Benefit Measured
with Test. Input

List of Incubative
Instructions

List of Protected
Instructions

Protected Code
11

MINPSID: Input Search Engine

● Weighted CFG: Generate an indexed CFG list of a program input.

BB12

BB13

BB14 BB16

BB15 BB17

Static CFG

Input

10

10000

10000

10000

10

10

BB12

BB13

BB14

BB15

BB16

BB17

Weighted CFG

ValueIndex ...

...
Indexed CFG List

10
BB12

BB13

BB14 BB16

BB15 BB17

SL: Fitness score
M: Number of historical inputs
N: Number of inst. in CFG
|in-bjn|: Euclidean distance between two inst.

10

10

1010000

10000
10000

● Fitness Function: Calculate average Euclidean distance between
current input with all historical searched inputs.

Guide GA search

Quantify a program
execution with an input.

Fitness Function:

The search of genetic algorithm is
drove by the fitness function.

12

Evaluation: Experimental Setup

● Benchmark
○ 11 open-source benchmarks

● Baseline Technique
○ Selective instruction duplication[1]

● Fault Model
○ Single bit-flip injections - accurate[2]

○ Errors in computation units/data path
○ One fault per program execution
○ User LLFI[3] for fault injection

● Input Generation
○ Random inputs

○ 50 inputs for each benchmark
○ Real-world inputs

○ KONECT Graph Collection
○ Kaggle Competition Dataset

[1] [CASES’2014] SDCTune: A model for predicting the SDC proneness of an application for configurable protection
[2] [DSN’2017] One Bit is (Not) Enough: An Empirical Study of the Impact of Single and Multiple Bit-Flip Errors
[3] [QRS’2015] LLFI: An Intermediate Code-Level Fault Injection Tool for Hardware Faults

13

Evaluation: Mitigating Loss of SDC Coverage

● The SDC coverage variation across different inputs is significantly (74.23%) reduced.

● The expected SDC coverage is closer to the most conservative one, reducing 97% loss of SDC coverage.

● Only 8.36% inputs lead to the loss of SDC coverage (37.58% for baseline SID). 14

“Protection level” here means “Performance Overhead Budget”

Evaluation: Finding Incubative Instructions

● Input search engine can identify 45.60% more incubative instructions compared with a
random fuzzer, and those more identified incubative instructions account for additional 34%
loss of SDC coverage.

Random Fuzzer:
Genetic algorithm with
random mutation (no

fitness function).

15

Evaluation: Time Taken to Run MINPSID

● On average, MINPSID takes 63.71 mins to finish the entire workflow.
○ Input search engine: 0.56 mins (Backprop) ~ 158.97 mins (Xsbench)

○ Per-Inst-FI (ICB. Insts): 0.88 mins (kNN) ~ 101.25 mins (Xsbench)

○ Per-Inst-FI (Ref. Input): 0.20 mins (Pathfinder) ~ 21.08 mins (HPCCG)
One time cost!

16

Genetic Algorithm

Dynamic Analysis
for Weighted CFG

Static Analysis
for CFG

Identification of
Incubative Inst. via

Per Inst. FI

Per Inst.
FI

Dynamic
Profiling

Case Study: MINPSID with Real-World Inputs

KONECT

BFS - Top 30 real-world graphs from KONECT.

Kmeans - Top 10 clustering competition datasets from kaggle.`

● The results are inline with what are messuared under randomly generated inputs:
○ Decreasing the SDC coverage variation by 54.77%.

○ Reducing 85.44% loss SDC coverage.

○ Only 16.67% inputs lead to the loss of SDC coverage (65.56% in baseline SID).

17

Summary

● Input variation leads to the loss of SDC coverage of programs under SID protection.

Yafan Huang
University of Iowa

yafan-huang@uiowa.edu
https://hyfshishen.github.io

Obtained all 3 badges
SC’22

This research was supported in part by the National Science Foundation
(NSF) under Grant No. 2211538 and 2211539, and the U.S. Department of
Energy, Office of Science under contract DE-AC02-06CH11357. Any
opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of
the NSF, the U.S. Department of Energy, or Baidu.

● Incubative instructions account for the loss of SDC coverage.

● MINPSID can efficiently identify incubative instructions, and hence harden SID across

multiple program inputs.

● MINPSID also works efficiently for programs under the real-world inputs.

● Open Source: https://github.com/hyfshishen/SC22-MINPSID

https://hyfshishen.github.io/
https://github.com/hyfshishen/SC22-MINPSID

