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[1] https://labs.engineering.asu.edu/mps-lab/research/error-resilience/
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Soft Errors in HPC

Shrinking hardware technology[1] Increasing HPC system scales[2]

Soft errors are inevitable in HPC

[1] [ToC’2016] A Case for Acoustic Wave Detectors for Soft-Errors
[2] https://github.com/karlrupp/microprocessor-trend-data
[3] [DSN’2014] Lessons Learned from the Analysis of System Failures at Petascale: The Case of Blue Waters
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https://github.com/karlrupp/microprocessor-trend-data


Error Propagation and Silent Data Corruption (SDC)
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Silent Data Corruption (SDC)

The most insidious error 
without noticing users!

Error 
Activates!

Amazon S3 Incident[1]

Summit Reliability Report[2]

[1] https://aws.amazon.com/message/41926/
[2] [SC’2021] Revealing power, energy and thermal dynamics of a 200PF pre-exascale supercomputer

SDC is an imminent threat to HPC

Program Execution
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● Circuit hardening ● Hardware Duplication

5
Average Worst-case

Wastes power as gap 
between average and 
worst-case widens due to 
variations Guard-band

Hardware duplication (i.e., 
DMR) can result in 2X 
slowdown and/or energy 
consumption

• In memory: Error Correction Code (ECC)
• In pipeline: Hardware means

Traditional Solutions

Very expensive to deploy in practice.



Selective Instruction Duplication

The cost-benefit curve of SID (Needle)
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Target of SID: Obtaining maximum SDC coverage 
under given performance overhead budget.

Knapsack Problem
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The cost-benefit curve of SID (Needle)
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The Problem: Input Variation

● SDC Coverage varies from 0% to 100%.

● Expected SDC Coverage is way too optimistic.

● 37.58% inputs lead to loss of SDC coverage.

9x user-reported SDC[1]

[1] [HotOS’2021] Cores that don’t count.

SDC Coverage Variation of 50 inputs under 
30% Performance Overhead Budget

Existing SID

Single Input

Error propagation behaviors in a program across the different inputs remain rather similar.

Assumption
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Instruction Sequence from SPLASH-2 FFT

Root Causes

● No SDCs under test input, but SDC happens under a different input.

● Input variation changes the program execution behaviors (e.g. control-flow), 
hence changes error propagation behaviors of different instructions.

Input A

…
%11 = load i64* %out
%12 = icmp slt i64 %11, 50
br label %13
…

…
%11 = load i64* %out
%12 = icmp slt i64 %11, 50
br label %13
… SDC Prob. = 17%

Need protect.
SDC Prob. = 0%
No need protect.

Input B

Instructions that experience significant variance in 
SDC probabilities across different program inputs.

Incubative Instruction
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Goal and Insights

● Minimize SDC coverage variation.
● Make expected SDC coverage closer 

to the most conservative one.

Our Goal:

Identify program inputs that maximize 
the control-flow variances.

Key Insights Software
Engineering

Depend-
ability

Input 
Fuzzing

Fault 
Injection
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MINPSID: Workflow

Test Input

Program Code Input Search 
Engine

Performance 
Overhead Budget

Protected Code

(Multi-Input-Hardened Selective Instruction Duplication)

Selective
Instruction
Duplication

MINPSID
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MINPSID: Our Approach

Per Inst. 
FI

Dynamic
Profiling Benefit and Cost Profiling

of Instructions
Re-prioritization of 

Incubative Instructions
Knapsack for 

Instruction Selection

Code Transformation for 
Instruction Duplication

Static Analysis 
for CFG

Identification of 
Incubative Inst. via 

Per Inst. FI
Genetic Algorithm Dynamic Analysis 

for Weighted CFG

Input Search Engine for Incubative Instructions Fitness FunctionProgram Code

Performance 
Overhead Budget

Benefit

Cost

Test Input

Benefit Measured 
with Test. Input

List of Incubative 
Instructions

List of Protected 
Instructions

Protected Code
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MINPSID: Input Search Engine

● Weighted CFG: Generate an indexed CFG list of a program input.

BB12

BB13

BB14 BB16

BB15 BB17

Static CFG

Input

10

10000

10000

10000

10

10

BB12

BB13

BB14

BB15

BB16

BB17

Weighted CFG

ValueIndex ...
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SL: Fitness score
M: Number of historical inputs
N: Number of inst. in CFG 
|in-bjn|: Euclidean distance between two inst.
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● Fitness Function: Calculate average Euclidean distance between 
current input with all historical searched inputs.

Guide GA search

Quantify a program 
execution with an input.

Fitness Function:

The search of genetic algorithm is 
drove by the fitness function.
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Evaluation: Experimental Setup

● Benchmark
○ 11 open-source benchmarks

● Baseline Technique
○ Selective instruction duplication[1]

● Fault Model
○ Single bit-flip injections - accurate[2]

○ Errors in computation units/data path
○ One fault per program execution
○ User LLFI[3] for fault injection

● Input Generation
○ Random inputs

○ 50 inputs for each benchmark
○ Real-world inputs

○ KONECT Graph Collection
○ Kaggle Competition Dataset

[1] [CASES’2014] SDCTune: A model for predicting the SDC proneness of an application for configurable protection
[2] [DSN’2017] One Bit is (Not) Enough: An Empirical Study of the Impact of Single and Multiple Bit-Flip Errors
[3] [QRS’2015] LLFI: An Intermediate Code-Level Fault Injection Tool for Hardware Faults
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Evaluation: Mitigating Loss of SDC Coverage

● The SDC coverage variation across different inputs is significantly (74.23%) reduced.

● The expected SDC coverage is closer to the most conservative one, reducing 97% loss of SDC coverage.

● Only 8.36% inputs lead to the loss of SDC coverage (37.58% for baseline SID). 14

“Protection level” here means “Performance Overhead Budget”



Evaluation: Finding Incubative Instructions

● Input search engine can identify 45.60% more incubative instructions compared with a 
random fuzzer, and those more identified incubative instructions account for additional 34%
loss of SDC coverage.

Random Fuzzer:
Genetic algorithm with 
random mutation  (no 

fitness function).
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Evaluation: Time Taken to Run MINPSID

● On average, MINPSID takes 63.71 mins to finish the entire workflow. 
○ Input search engine: 0.56 mins (Backprop) ~ 158.97 mins (Xsbench)

○ Per-Inst-FI (ICB. Insts): 0.88 mins (kNN) ~ 101.25 mins (Xsbench)

○ Per-Inst-FI (Ref. Input): 0.20 mins (Pathfinder) ~ 21.08 mins (HPCCG)
One time cost!
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Genetic Algorithm

Dynamic Analysis 
for Weighted CFG

Static Analysis 
for CFG

Identification of 
Incubative Inst. via 

Per Inst. FI

Per Inst. 
FI

Dynamic
Profiling



Case Study: MINPSID with Real-World Inputs

KONECT

BFS - Top 30 real-world graphs from KONECT.

Kmeans - Top 10 clustering competition datasets from kaggle.`

● The results are inline with what are messuared under randomly generated inputs:
○ Decreasing the SDC coverage variation by 54.77%.

○ Reducing 85.44% loss SDC coverage.

○ Only 16.67% inputs lead to the loss of SDC coverage (65.56% in baseline SID).
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Summary

● Input variation leads to the loss of SDC coverage of programs under SID protection.
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● Incubative instructions account for the loss of SDC coverage.

● MINPSID can efficiently identify incubative instructions, and hence harden SID across

multiple program inputs.

● MINPSID also works efficiently for programs under the real-world inputs.

● Open Source: https://github.com/hyfshishen/SC22-MINPSID

https://hyfshishen.github.io/
https://github.com/hyfshishen/SC22-MINPSID

