
Yafan Huang, Sheng Di, Xiaodong Yu, Guanpeng Li, Franck Cappello

cuSZp: An Ultra-fast GPU Error-bounded Lossy

Compressor with Optimized End-to-End Performance

Lossy Compression in HPC

■ Lossy compression can reduce data size drastically.
■ Higher compression ratio than lossless compression.
■ Introduced errors are controllable – error-bounded lossy compression.

■ Error-bounded lossy compression is used by various domains in HPC.

2
1. [Nature’2021] Near-surface real-time seismic imaging using parsimonious interferometry
2. [News@CMU’2021] Machine Learning Accelerates Cosmological Simulations
3. [TechReview@MIT’2018] What the hell is a climate model—and why does it matter?
4. [IEEESpectrum’2020] IBM's concept of quantum volume tries to measure quantum computing progress in ways beyond counting qubits

Seismic Imaging[1]

(e.g. RTM)
Cosmology Simulation[2]

(e.g. HACC, NYX)
Climate Simulation[3]

(e.g. CESM-ATM)
Quantum Circuit

Simulation[4]

(e.g. Grover)

GPU Lossy Compression

31. https://www.ansys.com/blog/unleashing-the-power-of-multiple-gpus-for-cfd-simulations
2. [HPDC’2022] Ultrafast Error-Bounded Lossy Compression for Scientific Datasets

A demand for using GPU Lossy Compression to
accelerate large-scale GPU applications.

■ Performance bottleneck: massive data generated.

■ Large memory footprint in GPU.

■ Data movement overhead between GPU-GPU/GPU-CPU.
CPU vs GPU Performance in

Aerodynamics Benmark[1]

■ GPU is critical to accelerate many large-scale applications.

■ CPU vs GPU performance testing in CFD Simulation[1].

■ GPU lossy compression can address this bottleneck with fast speed.

■ Encoding phase in SZx[2]: ~10 GB/s in CPU (in OpenMP), ~200 GB/s in GPU.

https://www.ansys.com/blog/unleashing-the-power-of-multiple-gpus-for-cfd-simulations

Rethinking Use Cases for GPU Lossy Compression

■ Distributed training for an ML model, a simple model parallelism case.

4

GPU1 Layer1

GPU2 Layer2 GPU3 Layer3

GPU4 Layer4

GradientsGradients

GradientsGradients

Distributed ML Model Training (One Layer for Each GPU)

■ Compressing gradients to reduce data movement overhead across devices.

Rethinking Use Cases for GPU Lossy Compression

■ How to evaluate: End-to-end throughput or kernel throughput?

■ Kernel: compression-related functions that execute on GPU.

■ End-to-end: input – arrays on GPU, output – arrays still on GPU.

5

CPUGPU4

Layer4

Lossy
Cmp.

Gradients

Compressed
Gradients

Extra data movement
overhead incurred!

High kernel throughput
High end-to-end throughput

High kernel throughput
Low end-to-end throughput

GPU3

Lossy
Dec.

GPU4

Layer3

Reconstructed
Gradients

GPU4 Layer4

Lossy
Cmp.

CPU

GPU3

GPU3

Lossy
Dec.

Layer4

Limitations for Existing GPU Lossy Compressor

■ CPU-GPU hybrid designs (e.g. cuSZ, cuSZx):

■ Pros: Good for offline compression, good visualization quality.

■ Cons: Bad for inline compression, low end-to-end throughput.

6

■ No error control supports (e.g. cuZFP):

■ Pros: Single kernel, high end-to-end throughput.

■ Cons: No error-control supported, not enough for post-hoc analysis.

Promising solution:

Pure GPU
Design

High E2E/Kernel
Throughput High CMP Ratio High Data

Quality

Single GPU
Kernel Error Control

Challenges for Designing Such a Compressor

7

■ Challenge 1: kernel fusion with linear recurrences.

Raw data
array

Partitioned
array

Thread 0 Thread 1 Thread 2 Thread 3
Data

Partitioning

Compressed
data for each

partition

Parallel
Compression

Concatenate
compressed
block dataCompressed

data

Linear recurrence exists! Index for each
compressed block is based on its previous one.

Challenges for Designing Such a Compressor

8

■ Challenge 2: balancing high throughput and high cmp. ratio & data quality.

Building A Huffman Tree[1] 3D Lorenzo Prediction[2]

1. https://en.wikipedia.org/wiki/Huffman_coding
2. [PPoPP’2020] waveSZ: a hardware-algorithm co-design of efficient lossy compression for scientific data

■ Fancier algorithms, more computation, lower throughput.

■ Kernel fusion for linear recurrences even complicates the compression algorithm.

It’s hard to both have your cake and eat it.

https://en.wikipedia.org/wiki/Huffman_coding

Our Solution: cuSZp

■ cuSZp is an error-bounded GPU lossy compressor with single kernel function.

9

Quant. and
Prediction

Fixed-length
Encoding Global

Sync.
Block

Bit-shuffle

Input
Data

Fo
r e

ac
h

bl
oc

k
2

Block Offset Array“Zero” Block
(Offset)

“Non-Zero”
Block

Offset

Quant. Integer Encoded Data

Sync. Offset Array

Cmp.
Data

“Zero”
Block Offset

“Non-Zero”
Block Offset

1

3 4

High-level Overview of cuSZp Compression Kernel

High Throughput High Compression
Ratio

Error Control
Supported

cuSZp: Quantization and Prediction

■ Quantization converts a floating point number into an integer.

■ Example: eb = 0.01, fp data = 17.335 -> quantization integer = 867.

■ Prediction removes redundant bit patterns.

10

Effective Bits

Integer Shown in 4 Bytes (32 Bits) Integer Value

ri-1 = 11592
ri = 11593
ri+1 = 11604

The only “Lossy” step in cuSZp.

Quant. Ints
without Pred.

Quant. Ints
with Pred.

0 Bit

1 Bit

Captions

Effective Bits

ri-1 = 14
ri = 1
ri+1 = 11

cuSZp: Fixed-length Encoding

■ Fixed-length encoding preserves a fixed amount of bit for each integer.

■ The fixed amount is determined by the greatest value for each data block.

11

123
-15
134
85
-77
4
-5
-88

Quant. Int.
Value

Abs. Int.
Value

123 x 1
15 x -1
134 x 1
85 x 1
77 x -1
4 x 1
5 x -1
88 x -1

Integer Shown in 4 Bytes (32 Bits)

Sign Maps
HPC data is smooth!

Captions Bits to
Remove

Bits to
Store

0 Bit
1 Bit

cuSZp: Global Synchronization

■ Global Synchronization generates index for each compressed block.
■ Phase 1: prefix-sum inside each threadblock.

■ Phase 2: inter-threadblock synchronization via single pass chained-scan.

■ Phase 3: restore global prefix-sum inside each threadblock.

12
Thread

Phase1

Phase2

Phase3

Thread
Block 260 GB/s on NYX dataset.

Thread Blk.

Global

Thread Blk.

Captions

cuSZp: Block Bit-shuffle

■ Block bit-shuffle does not modify compressed data – it rearranges data to
make this process suitable for accessing global memory in a parallel manner.

l0 = 123

l1 = 15

l2 = 134

l3 = 85

l4 = 77
l5 = 4

l6 = 5

l7 = 88

Byte 0
Byte 1

Byte 2

…

Byte 3
Byte 4

Byte 0

Byte 4

Byte 1

Byte 2

Byte 3

…

Original
Bytes

0 Bit

1 Bit
Shuffled
Bytes

Captions

13

…

Evaluation: Settings

■ Swing Cluster

■ NVIDIA A100 GPU (40GB)

■ AMD EPYC 7742 CPUs

■ 1 TB DDR4 Memory

14

■ Baseline Compressor

■ cuSZ[1]

■ cuSZx[2]

■ cuZFP[3]

■ HPC Datasets
■ Hurricane: weather simulation
■ NYX: cosmology simulation
■ QMCPack: quantum computing
■ RTM: seismic imaging
■ HACC: cosmic simulation
■ CESM-ATM: climate simulation

■ Evaluation Metrics

■ Throughput (GB/s)

■ Compression ratio

■ Reconstructed data quality

1. [PACT’2020] cuSZ: An Efficient GPU-Based Error-Bounded Lossy Compression Framework for Scientific Data
2. [HPDC’2022] Ultrafast Error-bounded Lossy Compression for Scientific Datasets
3. [TVCG’2014] Fixed-Rate Compressed Floating-Point Arrays

Evaluation: End-to-End Throughput

■ End-to-End Throughput: input array on GPU, output array on GPU.

15■ 95.53x with cuSZ and 55.18x with cuSZx, due to their CPU-GPU hybrid design.

Evaluation: Kernel Throughput

16

■ Kernel Throughput: GPU computation kernel throughput.

■ 93.63 GB/s and 120.04 GB/s for compression/decompression throughput.

Evaluation: Compression Ratio

■ cuSZp achieves higher compression ratio on 16/24 cases than cuSZ and cuSZx.

■ cuZFP is not evaluated here due to different designs.
17

Evaluation: Data Quality - Rate Distortion

■ Rate Distortion: PSNR/SSIM unders the same compression ratio (bit rate).

■ Bit rate: how many bits are used to store one floating point data.

■ PSNR & SSIM: quantitative metrics for evaluating reconstructed data quality.

18Rate Distortion (PSNR) Rate Distortion (SSIM)

The lower
the better

The higher
the better

Evaluation: Data Quality - Visualization

■ cuSZp vs cuZFP under similar compression ratio.
■ 3D isosurface visualization.

19
Better quality due to error control.

Code Example: How to Use cuSZp

20

#include <cuSZp_utility.h>
#include <cuSZp_entry_f32.h>

// For measuring the end-to-end throughput.
TimingGPU timer_GPU;

// cuSZp compression.
timer_GPU.StartCounter(); // set timer
SZp_compress_deviceptr_f32(d_oriData, d_cmpBytes,

 nbEle, &cmpSize, errorBound, stream);
float cmpTime = timer_GPU.GetCounter();

// cuSZp decompression.
timer_GPU.StartCounter(); // set timer
SZp_decompress_deviceptr_f32(d_decData, d_cmpBytes,
 nbEle, cmpSize, errorBound, stream);
float decTime = timer_GPU.GetCounter();

Single-precision cuSZp compression/decompression (device pointers)

Summary

■ cuSZp is a single kernel error-bounded lossy compressor on GPU.

■ 93.63 GB/s and 120.04 GB/s for compression and decompression.

■ cuSZp also achieves high compression ratio and high data quality.

■ cuSZp now supports both single- & double-precision floating point data.

■ cuSZp also performs well on lower-end GPUs (e.g. RTX 3080).

■ Open source: https://github.com/szcompressor/cuSZp/

21

Yafan Huang
University of Iowa
yafan-huang@uiowa.edu
https://hyfshishen.github.io

https://github.com/szcompressor/cuSZp/
https://hyfshishen.github.io/

