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Abstract—Existing GPU lossy compressors suffer from ex-
pensive data movement overheads, inefficient memory access
patterns, and high synchronization latency, resulting in limited
throughput. This work proposes CUSZP2, a generic single-kernel
error-bounded lossy compressor purely on GPUs designed for
applications that require high speed, such as large-scale GPU sim-
ulation and large language model training. In particular, CUSZP2
proposes a novel lossless encoding method, optimizes memory
access patterns, and hides synchronization latency, achieving
extreme end-to-end throughput and optimized compression ratio.
Experiments on NVIDIA A100 GPU with 9 real-world HPC
datasets demonstrate that, even with higher compression ratios
and data quality, CUSZP2 can deliver on average 332.42 and
513.04 GB/s end-to-end throughput for compression and decom-
pression, respectively, which is around 2× of existing pure-GPU
compressors and 200× of CPU-GPU hybrid compressors.
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I. INTRODUCTION

Modern scientific simulations and Large Language Model
(LLM) training generate enormous volumes of data, creating a
bottleneck for High-Performance Computing (HPC) systems.
This big data issue motivates domain scientists to explore
more efficient data reduction techniques. While lossless com-
pressors are limited by their modest compression ratios [1]
(around 2:1), error-bounded lossy compression [2]–[4] offers
significantly higher compression ratios by introducing user-
controllable errors, thus turns out to be a promising solution in
HPC simulations, such as cosmology simulation [5], quantum
circuit simulation [6], and seismic imaging [7], [8].

A. Motivation for Ultra-Fast GPU Lossy Compression

Recently, there have been increasingly more HPC scenarios
requiring GPU compression and rapid processing speeds [9]–
[14]. One example is Reducing Data Stream Intensity [10].
In the Linear Coherent Light Source (LCLS) [11], a leading
free-electron laser facility at the Stanford Linear Accelerator
Center, the raw acquisition rate of high-brilliance X-ray beams
reaches approximately 250 GB/s. This rate demands a com-
pression throughput that exceeds the capabilities of CPU-based
compressors, underscoring the need for high-speed GPU solu-
tions. Another case is Benefiting LLM Training. LLaMA [15],
for example, takes 2,048 NVIDIA A100 GPUs to store its
parameters and 21 days to complete model training [9]. To use
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lossy compression to reduce such GPU memory footprint, any
expensive CPU computations or CPU-GPU data movement
overhead can downgrade performance drastically. Specifically,
while theoretical computation throughput for GPU can reach
thousands of GB/s [16], PCIe [17], transferring data between
CPUs and GPUs, has only a limited throughput of around
10∼20 GB/s. CPU-GPU hybrid designs can result in much
longer training periods, thus leading to huge financial losses.
These practical scenarios drive researchers to explore ultra-fast
GPU lossy compression techniques.

B. Limitations of Existing Works and Goal

However, existing GPU lossy compressors suffer from
limited throughput, with the underlying reasons detailed in
Table I. For cuSZ [18], cuSZx [19], and MGARD-GPU [20],
although the core compression algorithm executes within
GPU, they require expensive CPU computations to perform
global synchronization, build Huffman tree, or conduct GPU
kernel communications. In the meanwhile, cuZFP [21], FZ-
GPU [22], and cuSZp [23] have pure-GPU designs, but they
either underutilize memory bandwidth or are bounded by
latency, which critically impacts GPU kernel throughput [24].

Existing GPU
Lossy Compressor

Pure GPU
Design?

Single
Kernel?

High MB
Utilization?

Latency
Control?

cuSZ ✗ ✗ ✗ —
MGARD-GPU ✗ ✗ ✗ —
cuSZx ✗ ✓ ✗ —
cuZFP ✓ ✓ ✗ —
FZ-GPU ✓ ✗ ✗ ✗
cuSZp ✓ ✓ ✗ ✗
CUSZP2 (our work) ✓ ✓ ✓ ✓

TABLE I: Key designs related to throughput in existing GPU
lossy compressors. “MB” denotes memory bandwidth.

Ideally, a promising GPU lossy compressor should satisfy:
• Pure-GPU design/implementation without any CPU com-

putations and data movement overheads.
• Extreme throughput with high memory bandwidth utiliza-

tion and high-speed latency control.
• High compression ratio and user-satisfied data quality –

intrinsic requirements for designing a lossy compressor.

C. Our Solution: CUSZP2

In this work, we propose CUSZP2, an error-bounded lossy
compressor purely executed in one GPU kernel, achieving
extreme throughput, optimized compression ratios, and high
reconstructed data quality. CUSZP2 compresses data at block
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granularity and combines each compressed block into a single,
unified byte array. Specifically, there are three key designs
in CUSZP21. (1) Outlier Fixed-Length Encoding, which is a
novel lossless encoding algorithm and cooperates with a fine-
tuning selection strategy, allows CUSZP2 to achieve higher
compression ratios than existing error-bounded GPU compres-
sors. (2) Vectorized Memory Accesses. This design enables
CUSZP2 to reduce the number of memory instructions and
access global memory in a coalescing manner, highly utilizing
memory bandwidth in modern GPU architectures. (3) Global
Prefix-sum via Decoupled Lookback. Inspired by [25], we
propose a fine-tuned compression-aware decoupled lookback
strategy to minimize synchronization (i.e. concatenating com-
pressed blocks within GPU) latency with TB-level throughput.
Some key results of CUSZP2 evaluated from several represen-
tative HPC datasets are listed below:

• On average, CUSZP2 offers 332.42 GB/s and 513.04
GB/s end-to-end throughput for compression and decom-
pression on NVIDIA A100 GPU. This throughput is
around 2× of existing pure-GPU lossy compressors and
200× of CPU-GPU hybrid lossy compressors.

• Compared with state-of-the-art error-bounded GPU lossy
compressors, CUSZP2 has higher compression ratios in
24/27 cases, with high isosurface visualization quality.

• CUSZP2 delivers from 612.83 GB/s to 809.71 GB/s
throughput for processing double-precision HPC datasets
and supports random access with TB-level throughput.

• Such high throughput is also observed in other lower-
end NVIDIA GPUs, such as RTX 3090 and RTX 3080,
demonstrating the compatibility of CUSZP2 designs.

II. RETHINKING THROUGHPUT IN GPU LOSSY
COMPRESSORS: WHY END-TO-END?

Due to the massive parallelism designs, GPU lossy com-
pressors [21]–[23], [26] achieve much higher throughput
(10×∼100×) compared with CPU solutions [2], [3], [20],
[27], [28] and hence are widely used in inline compression
tasks [10] that require rapid processing speed, such as reducing
data stream intensity [11], [29] and memory footprint [6], [8].
In these scenarios, throughput, defined as the volume of data
processed per unit of time (e.g. GB/s), is a primary concern
in the design of such compressors.

To evaluate GPU lossy compressor throughput, current
research typically focuses on either kernel throughput, which
measures only GPU-executed compression functions (i.e. ker-
nels), or end-to-end throughput, encompassing all computa-
tional processes to generate the output. This distinction is an-
alyzed using a machine learning distributed training example,
as shown in Figure 1. For example, in a three-layer neural
network using layer-wise model parallelism [30]–[32] (Fig-
ure 1(a)), each layer is distributed to different GPUs. During

1CUSZP2 code: https://github.com/szcompressor/cuSZp. Compared with
cuSZp, CUSZP2 has different algorithm designs and implementations. The
reasons we maintain CUSZP2 in the same code repository are two-fold: (1)
CUSZP2 is a better alternative to cuSZp in any perspective. (2) In principle,
CUSZP2 follows a similar 4-stage compression pipeline with cuSZp.
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Fig. 1: Demonstrating why end-to-end throughput is more im-
portant than kernel throughput using a straightforward example
from machine learning distributed training.

backward propagation, gradients from each layer are transmit-
ted to preceding layers for model training. In this case, as seen
in Figure 1(b), both CPU-GPU hybrid compressors and pure
GPU compressors can compress such gradients to minimize
data movement overheads between different GPUs/nodes. It
is possible to observe high kernel throughput for both types
of compressors, however, the GPU kernels are only part of
hybrid compressors – they also include CPU computations and
data movement between CPU and GPU, which are routinely
expensive but crucial in overall training phase. We show
such differences in three CPU-GPU hybrid lossy compressors,
including cuSZ [18], cuSZx [19], and MGARD-GPU [26]. As
seen in Figure 2, while the kernel throughput can be as high as
177.48 GB/s, the end-to-end throughput only limits from 0.32
(MGARD compression) to 1.79 GB/s (cuSZx compression).
This gap shows that kernel throughput is an overly optimistic
measurement and can drastically downgrade the performance
of entire program executions, making end-to-end throughput
a more appropriate evaluation metric. This conclusion ap-
plies not just to ML training but also to other applications
that collaborate on GPU clusters, including large-scale HPC
simulations [33], [34] and MPI communications [35]–[37].
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Fig. 2: Kernel throughput vs end-to-end throughput in several
CPU-GPU hybrid error-bounded lossy compressors.

In this study, we measure the end-to-end throughput of a
GPU lossy compressor in a rigorous and practical way for
users, as illustrated in Figure 3 (using compression as an exam-
ple, which also applies to decompression). Given the original
data on GPU, we treat compression API as a black box and
include all code before a compressor generates the compressed
data on GPU. This measurement method is rigorous even for
some pure GPU compressors since it also includes all GPU
intrinsic APIs, such as cudaMemcpy(), which are routinely
not considered in past end-to-end measurements [22], [23].

https://github.com/szcompressor/cuSZp


... // HPC simulation/ML training.
start_timer();
compression(ori_data, cmp_data);
end_timer();
... // HPC simulation/ML training.

void compression(ori_data, cmp_data) {
float* ...;
cudaMalloc(...);
cudaMemcpy(...);
cudaMemset(...);
...
compression_kernel1<<<...>>>(...);
...
cudaFree(...);

}

compression(): end-to-end API
ori_data: original data on GPU
cmp_data: compressed data on GPU

Fig. 3: A code example for GPU compression (also for
decompression) throughput measurement in this work.

Definition: For brevity, Throughput of a GPU com-
pressor in this work is defined as end-to-end through-
put, which encompasses entire computations between
original (or compressed) data on GPU and compressed
(or reconstructed) data on GPU, with the output being
concatenated into a single, unified array.

III. CUSZP2: HIGH-LEVEL OVERVIEW

We propose CUSZP2, a GPU error-bounded lossy compres-
sor with ultra-fast throughput and optimized compression ratio.
CUSZP2 executes holistic compression or decompression on
a single GPU kernel, to avoid expensive data movement
overhead and extra global memory accesses. In this section,
we explain its high-level designs with a running example.
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Fig. 4: Workflow in CUSZP2 compression kernel.

High-level overview. Figure 4 presents a high-level
overview of the workflow in CUSZP2 compression kernel.
Given an original HPC dataset, CUSZP2 segments it into
uniformly-sized data blocks of consecutive floating-point num-
bers, then compresses them in parallel through four major
steps. Within each block, CUSZP2 initiates the compression
workflow with Lossy Conversion (➊), transforming each
floating-point number into a quantization integer within the
user-defined error bound. Then, CUSZP2 compresses each
processed data block by Lossless Encoding (➋). Specifically,
two encoding modes are supported in CUSZP2: plain fixed-
length encoding and outlier fixed-length encoding. While the
former preserves a fixed number of bits for each integer,
the latter reduces this fixed number by adaptively storing the
outlier. Since the length of each compressed block is different,
CUSZP2 conducts Global Prefix-sum (➌) (i.e. device-level
parallel prefix scan) to generate the index of each compressed
block in the final compressed array. This step is achieved
by the decoupled lookback strategy in CUSZP2, significantly
reducing device-level synchronization latency compared with
state-of-the-art GPU compressors [22], [23]. Finally, CUSZP2
combines all compressed blocks based on the indexes by
Block Concatenation (➍). For decompression, after gener-
ating the compressed block indexes via ➌, CUSZP2 recon-
structs each data block in reverse order of the rest three
steps (➍→➋→➊). Note that ➊ and ➍ in both compression

and decompression kernels require reading input and writing
output to global variables, hence they involve extensive access
to GPU memory. In CUSZP2, these two steps are designed in
a fully vectorized manner, highly utilizing the GPU memory
bandwidth compared with existing solutions [21]–[23].
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Fig. 5: A running example for compressing one data block in
CUSZP2. Here block size is 8 and error bound is 0.1. The step
number (e.g. ➊) refers to workflow mentioned in Figure 4.

A running example. Figure 5 further explains the CUSZP2
compression algorithm with a running example on one data
block. In this case, block size L is 8 and error bound eb is 0.1.
First, ➊ converts each floating-point data into its correspond-
ing quantization integer by a rounding (or ceiling) operation.
For example, 1.12 is transformed into 6. In decompression,
this number is reconstructed by 6 × 2eb = 1.2 to satisfy the
error bound (i.e. |1.12 − 1.2| < eb). This is the only lossy
step in CUSZP2. Then, ➋ compresses this integer block into
two parts: the first part requires 1 byte to record the offset
information and the second part (5 bytes in this block) saves
the compressed data. We will explain more details for this en-
coding algorithm in Section IV-A. Since different compressed
blocks exhibit different lengths, ➌ calculates indexes for these
blocks by formulating this process as a prefix-sum problem.
Based on these indexes, ➍ concatenates all information into
a single, unified compressed byte array. Like individual data
blocks, the final compressed byte array also consists of two
parts. We store offset information because each data block’s
offset requires only 1 byte, ensuring predictable locations.
CUSZP2 leverages this offset data to guide decompression to
access a specific compressed data block.

IV. CUSZP2: KEY DESIGNS

In this section, we detail three key designs in CUSZP2. The
step number (e.g. ➊) in this section still refers to Figure 4.

A. Outlier Fixed-length Encoding (in ➋)

Motivation for processing outliers. High smoothness, a
notable feature of many HPC datasets [13], [38], implies that
data values tend to be similar when they are spatially near
each other. In Figure 6, we visualize one slice from CESM-
ATM [38], a standard climate simulation dataset, to explain
this motivation. For an arbitrary data block, lossy conversion
transforms it into a set of integers with close values. If we
use the first-order difference (i.e. n′

i = ni−ni−1) to eliminate
redundant bit patterns, the first element in this block possibly



turns out to be an outlier. In the context of fixed-length
encoding, the presence of an outlier necessitates storing four
bits for each integer, compared to just one bit in its absence.
This defect not only exits for the fixed-length encoding men-
tioned above but naturally for all GPU compressors, since
GPU parallelism requires processing datasets in a blockwise
manner, breaking the spatial smoothness inevitably.
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Fig. 6: Explaining a drawback of GPU blockwise designs and
plain fixed-length encoding while compressing a data block
with smooth values. This block is also used in Figure 7 and 8.

Outlier fixed-length encoding (Outlier-FLE). To manage
outliers efficiently, this work proposes Outlier-FLE. In con-
trast, existing fixed-length encoding is denoted as Plain-FLE.
The main idea and benefits of Outlier-FLE are illustrated in
Figure 7. Given a set of quantization integers after first-order
difference, Outlier-FLE first gets their absolute values and
stores signs separately, allocating one bit per integer. A bit
value of 0 or 1 indicates a positive or negative integer. In this
example, as the block size is 8, the length of aggregated signs
is 1 byte. For preserving the outlier, value 8 is within 0∼255,
indicating Outlier-FLE can save it with only 1 byte without
any losses. For preserving the remaining integers, Outlier-FLE
stores 1 bit (i.e. length of effective bits) for each integer. In
all, Outlier-FLE compresses this data block (8×4 = 32 bytes)
into 3 bytes, achieving a compression ratio of 32/3 = 10.7,
whereas this number in Plain-FLE is only 32/5 = 6.4.
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Fig. 7: Illustrating the main idea of outlier fixed-length encod-
ing and its benefits over plain fixed-length encoding.

Recall that two modes are supported in the Lossless Encod-
ing (➋) of CUSZP2 workflow (see descriptions for Figure 4).
While using Outlier-FLE as the target mode, CUSZP2 adopts
a fine-tuned selection strategy, that is, “for each data block,
selecting Outlier-FLE only when it offers a higher compression
ratio”. CUSZP2 is capable of this selective approach because
the compression ratios for both Outlier- and Plain-FLE can

be determined by simply iterating the absolute values of all
integers within a block, avoiding any costly re-computations.
The selection information, as shown in Figure 8, is recorded in
the block offset (definition see Figure 5). Since the absolute
value of a signed int32 data ranges from 0 to 231 − 1, the
number of fixed-lengths can only range from 0 to 31, fitting
within a 5-bit representation. Unlike Plain-FLE, which does
not utilize the three most significant bits, Outlier-FLE employs
these for outlier data encoding. The foremost bit serves as
a mode flag: a value of 1 signals Outlier-FLE compression;
otherwise, Plain-FLE is indicated. The next two bits are
used to encode the outlier’s size adaptively – 00, 01, 10, or
11 denote outlier sizes of 1, 2, 3, or 4 bytes, respectively.
This adaptive strategy enhances compression ratios and outlier
storage efficiency without adding overhead.
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Fig. 8: The block offset design in outlier fixed-length encoding.

The other Lossless Encoding mode in CUSZP2 strictly em-
ploys Plain-FLE for all data blocks, and there are two reasons
for maintaining both encoding modes. (1) Variability in HPC
dataset characteristics: Not all HPC datasets, such as the VX
field from HACC [13] (a premier cosmology simulation) and
QMCPACK [39] (a quantum Monte Carlo simulation), display
significant smoothness. In these instances, Plain and Outlier
modes achieve almost identical compression ratios. (2) Trade-
offs between modes: Each mode offers distinct advantages.
The Outlier mode can deliver optimized compression ratios
and enhanced throughput, while the Plain mode, without the
fine-tuned selection strategy, targets extreme throughput. Note
that even the Outlier mode in CUSZP2 offers much higher
throughput than any other existing GPU lossy compressors,
and we will evaluate them thoroughly in Section V and VI.

B. Vectorized Memory Accesses (in ➊ and ➍)

Existing GPU lossy compressors are highly memory-
bounded. Compression algorithms [18], [20], [21], [23],
routinely characterized by modular structures, exhibit inher-
ent irregularity compared with computation-intensive tasks
such as matrix-matrix multiplication on GPUs [40]–[42].
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This modular composition leads to
diverse memory access patterns,
making these algorithms more
susceptible to being memory-
bounded. We demonstrate this
statement in Figure 9. Since CPU-
GPU data movement overheads
already highly limit the through-
put of hybrid compressors [18]–
[20], we only focus on compres-
sors with pure GPU designs, in-
cluding cuZFP [21], FZ-GPU [22],



and cuSZp [23]. We conducted tests using field P3000 from
RTM [43] dataset (from seismic imaging) on an NVIDIA
A100 GPU (40 GB) and assessed the memory throughput
with Nsight Compute (CUDA V11.2). The memory throughput
observed for these compressors ranged between 159.95 GB/s
(FZ-GPU) and 397.26 GB/s (cuSZp) – substantially below
the A100 GPU’s memory bandwidth capacity of 1555 GB/s.
This significant underutilization of the memory capabilities
motivates us to optimize memory access behaviors in CUSZP2.

Vectorized memory accesses. We propose vectorized mem-
ory accesses to exploit GPU global memory bandwidth when
performing read (➊) and write (➍) operations, thereby achiev-
ing higher throughput in CUSZP2. The key idea is two-fold.
(1) Within each data block, use vector variables to reduce the
number of memory instructions. (2) At data block-level, enable
memory access in a coalescing manner.

void a_CUDA_kernel (float* array, ...) {
  for (int i=0; i<ele_num; i++) {
    float var = array[i];
    ... // Operation for var
    array[i] = var;
  }
}

void a_CUDA_kernel (float4* array, ...) {
  for (int i=0; i<ele_num/4; i++) {
    float4 var = array[i];
    ... // Operation for var.x
    ... // Operation for var.y
    ... // Operation for var.z
    ... // Operation for var.w
    array[i] = var;
  }
}

/*0080*/ LD.E R2, [R6]
… …
/*01a0*/ ST.E [R4], R2

/*0098*/ LD.E.128 R4, [R10]
… …
/*04c2*/ ST.E.128 [R8], R4
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Fig. 10: Reducing the number of memory instructions by
vectorizing a CUDA kernel function (below is SASS code).

Figure 10 illustrates the benefits of using vector variables
with a demo CUDA code and its corresponding SASS instruc-
tions (i.e. low-level assembly language for NVIDIA GPU). In
the original program (left), a loop iterates over each float
element, conducting memory instructions LD.E and ST.E
to load and store 32-bit width for ele_num times. After
vectorization (right), each iteration groups four consecutive
elements into a float4 variable, and performs memory
operations together. The resulting compiled code shows that
vectorized SASS instructions LD.E.128 and ST.E.128
execute only ele_num/4 times, significantly reducing the
number of memory instructions and maximizing L1 cache
utilization, and hence better utilizing the memory bandwidth.
This loop vectorization design also reduces control-flow penal-
ties [44], [45], which GPUs generally handle less efficiently.
Note that vectorizing the entire compression workflow can
be extremely challenging. CUSZP2 realizes this due to the
inherently regular nature of fixed-length encoding, which treats
each element uniformly (i.e. preserving the same number of
bits). In contrast, vectorizing Huffman [46], [47] or run-length
encoding [48] can drastically complicate program control-flow,
negating the benefits of vectorization and potentially reducing
GPU compression throughput in return.

Figure 11 shows how we enable coalescing memory access
patterns in CUSZP2 at the data block level. In CUSZP2, each
thread compresses multiple data blocks iteratively – one data
block for one iteration. In each iteration, the key design is to
let all threads in one warp (i.e. consecutive 32 threads) access
adjacent data blocks in global memory. By doing so, memory
transactions are consolidated, as the GPU’s memory controller

One Thread in Warpn+1

One Thread in Warpn

... ...

...

One Data Block

Original Dataset (1D Array in Global Memory) 1st Iter. 2rd Iter.

...

...

Fig. 11: Illustration of enabling coalescing global memory
access at data block-level in CUSZP2. Note that a real warp
in CUDA contains 32 threads.

can merge accesses from the warp into fewer transactions,
thus optimizing memory bandwidth usage. After the above
two memory optimizations, with the same setting in Figure 9,
CUSZP2 can achieve 1330.24 GB/s memory throughput in the
compression stage. We will present more details in Section V.

C. Global Prefix-sum via Decoupled Lookback (in ➌)

(a) Prefix-sum with Plain Chained-Scan (b) Prefix-sum with Decoupled Lookback
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Fig. 12: Illustrating the ideas of two device-level prefix-sum
designs: plain chained-scan (left, without latency control) and
decoupled lookback in CUSZP2 (right, with latency control).

Limitation for existing synchronization techniques. Syn-
chronization in blockwise parallel compressors [19], [22], [23],
[49] is crucial for determining the location of each compressed
block before concatenating them into a single, unified byte
array. This task can be formulated as an exclusive prefix-sum
problem, where each block must know the total length of all
its preceding blocks. While this task on CPUs can be realized
by straightforwardly constructing a loop [19], the same thing
on GPUs poses substantial challenges. The inherent linear
recurrences disrupt GPU parallelism [50], leading to inevitable
latency. To tackle this, existing GPU compressors adopt a
“Reduce-then-Scan” strategy [25] comprising three steps. (1)
Reduce: Computing the total compressed block length for all
threads within a thread block. (2) Global Synchronization: Per-
forming prefix-sum across different thread blocks, retrieving
synchronized device-wide total lengths. (3) Scan: Still within
each thread block, distributing the synchronized lengths to
each thread, allowing each data block to know its location
in the final compressed data. Since atomic operation for
global memory is relatively slow [22], [51], the state-of-the-art
approach for global synchronization is plain chained-scan [23],
[52], [53], as explained in Figure 12 (left). As seen, the global
synchronization is performed via a serial implementation,
where each thread block must wait for its predecessors to



complete before proceeding. This design unavoidably leads
to high latency, especially for large HPC datasets, which is
intolerable for a compressor that targets extreme throughput.

Hiding latency with decoupled lookback. In CUSZP2, we
hide such synchronization latency via a decoupled lookback
strategy. Inspired by [25] and [23], we propose a compression-
aware adaptive lookback design and incorporate it into the
single-kernel compression workflow (➌). The main idea can be
explained in Figure 12 (right). While the serial chained-scan
is performing (see the red arrow), each thread block performs
a lookback operation for its predecessors and aggregates
the local reduction lengths until it identifies a previously
completed thread block. In this process, CUSZP2 decouples
the serial chained-scan and exploits computation resources in
those “waiting” blocks, thus controlling latency successfully.

One 
Thread

One Thread 
Block (TB) Reduce Scan Device-level 

Sync. Progress
Lookback 
Progress

Finished Device-level sync is finished, now at local scan or storing bytes.

Looking Back Local reduce is finished, now looking back its predecessors.

Waiting Compression or local reduce is not finished.

TB0 TB1 TB2 TB3 TB4

Status:
Finished

Status:
Finished

Status:
Looking back

Status:
Waiting

Status:
Finished

Fig. 13: Explaining the implementation of decoupled lookback
in CUSZP2 using an example captured at a particular moment.

In Figure 13, we capture a moment to explain the implemen-
tation of this strategy in CUSZP2. Each thread block (TB0 to
TB5) can be in one of three possible statuses. (1) Finished: It
indicates device-level synchronization finishes, and this thread
block is in later steps such as local reduce and storing bytes
(or complete). (2) Looking Back: In this status, although the
local scan is complete, device-level synchronization has not
yet propagated to this thread block. So it is looking back at
its predecessors and aggregating their local reduction values.
(3) Waiting: This status means the compression or local scan
within this thread block has not finished. When a Looking Back
thread block aggregates a Waiting one, it will also wait until it
is completed. In this example, TB2 achieves Finished status by
looking back TB1 rather than device-level synchronization. In
the next moment, the device-level synchronization will bypass
computations in TB2 (i.e. decouples the original “chain”)
and look for the next unfinished thread block, resulting in
much lower latency than plain chained-scan. Our fine-tuned
implementation allows device-level synchronization on several
representative HPC datasets to achieve 846.85 GB/s through-
put, 2.41 times of the state-of-the-art approaches. We will
show more results in Section V.

V. EVALUATION

In this section, we evaluate CUSZP2 with several state-
of-the-art GPU lossy compressors from three perspectives:

throughput, compression ratio, and reconstructed data quality.

A. Experimental Setups

1) Platforms: We evaluate CUSZP2 and other GPU com-
pressors on one NVIDIA A100 (108 SMs, 40 GB) GPU,
provided by Swing Cluster [54] from Argonne National Labo-
ratory. Each node in Swing Cluster has two AMD EPYC 7742
CPUs and 1 TB of DDR4 memory. The operating system is
Ubuntu 20.04 and the CUDA toolkit version is 11.2 (including
NVCC compiler and Nsight Compute).

2) Dataset: We selected 9 real-world HPC datasets (details
see Table II) from 2 suites: Scientific Data Reduction Bench-
marks (SDRBench) [55] and Open Scientific Visualization
Datasets (Open-SciVis) [56]. These datasets are from various
HPC domains and have been extensively studied in recent data
compression works [19], [20], [22], [23], [57]–[59].

Datasets Suite Dims per Field # Fields Total Size

CESM-ATM [38] SDRBench 3600×1800×26 33 20.71 GB
HACC [13] SDRBench 1,073,726,487 6 23.99 GB
RTM [43] SDRBench 1008×1008×352 3 3.99 GB
SCALE [60] SDRBench 1200×1200×98 12 6.31 GB
QMCPack [39] SDRBench 69×69×33120 2 1.17 GB
NYX [61] SDRBench 512×512×512 6 3.00 GB
JetIn [62] Open-SciVis 1408×1080×1100 1 6.23 GB
Miranda [63] Open-SciVis 1024×1024×1024 1 4.00 GB
SynTruss [64] Open-SciVis 1200×1200×1200 1 6.42 GB

TABLE II: Real-world HPC datasets used in this work.

3) Compressor Settings: For CUSZP2, we evaluate both
supported lossless encoding modes and denote them as
CUSZP2-P (with plain-FLE) and CUSZP2-O (with outlier-
FLE). The block size for CUSZP2 is 32 since we find this
is the overall best choice in balancing high throughput and
high compression ratio. For baseline compressors, we select
FZ-GPU [22], cuSZp [23], and cuZFP [21], [28], which
are three state-of-the-art pure-GPU lossy compressors. The
reasons for such selections are twofold. (1) The through-
put of CPU-GPU hybrid compressors (such as cuSZ [18],
cuSZx [19], and MGARD-GPU [26]) is highly limited by
expensive CPU computations and CPU-GPU data movement
overheads, making them impractical for inline compression
tasks [11], [12], [31]. (2) Existing studies [22], [23] prove
that pure-GPU compressors can outperform hybrid ones for
both throughput and compression ratio. For error-bounded
compressors (CUSZP2, FZ-GPU, cuSZp), we use value-range-
based relative error bound (REL). For example, an error bound
REL λ (λ ∈ (0, 1)) indicates the difference between each
original data point and its corresponding reconstructed one
should be smaller than λr, where r denotes the value range
of this dataset. Note that cuZFP only supports fixed-rate mode
(i.e. preserving a fixed number of bits per data point).

B. Throughput

Recall that throughput is the primary concern for a GPU
compressor (Section II), we comprehensively evaluate the
throughput for CUSZP2 and other baseline compressors in this
section. For error-bounded compressors, we evaluate through-
put for both compression and decompression with REL 1E-
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(a) Compression throughput with REL 1E-2 (Fixed-Rate 4 for cuZFP).
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(b) Decompression throughput with REL 1E-2 (Fixed-Rate 4 for cuZFP).
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(c) Compression throughput with REL 1E-3 (Fixed-Rate 8 for cuZFP).

0

100

200

300

400

500

600

CESM−ATM
HACC

RTM
SCALE

QMCPack
NYX

JetIn
Miranda

SynTruss
Average

856.24 732.24948.26 714.44

T
h

ro
u

g
h

p
u

t 
(G

B
/s

)

cuSZp2−P cuSZp2−O cuZFP FZ−GPU cuSZp

(d) Decompression throughput with REL 1E-3 (Fixed-Rate 8 for cuZFP).
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(e) Compression throughput with REL 1E-4 (Fixed-Rate 16 for cuZFP).
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(f) Decompression throughput with REL 1E-4 (Fixed-Rate 16 for cuZFP).

Fig. 14: Compression and decompression throughput evaluation of CUSZP2 and other baseline compressors.

2, REL 1E-3, and REL 1E-4 error bounds. For cuZFP, we
measure throughput under fixed rates 4, 8, and 16.

Main Results of Throughput. Figure 14 presents through-
put for compression and decompression. We observe that
both CUSZP2-P and CUSZP2-O consistently outperform all
existing pure-GPU compressors in throughput. On average,
CUSZP2-P achieves compression and decompression through-
put of 334.91 and 538.27 GB/s, respectively, while CUSZP2-
O reaches 329.94 GB/s for compression and 597.29 GB/s
for decompression. These numbers only range from 107.10
(cuZFP compression) to 188.74 GB/s (cuSZp decompression)
for other GPU compressors. In JetIn dataset, CUSZP2-P can
even reach 1072.85 GB/s for decompression at REL 1E-2.
The reason is that JetIn is highly sparse and consists of
lots of zero data blocks (i.e. only containing zero values).
While processing such blocks, both CUSZP2-P and CUSZP2-
O directly flush zero values with cudaMemset() instead of
performing decompression computations, resulting in excep-
tionally high throughput. Similarly, since larger error bounds
create more zero data blocks, increasing error bounds (e.g.
from REL 1E-4 to REL 1E-2) in CUSZP2 leads to higher
throughput. We also observe that decompression in CUSZP2
usually has higher throughput than compression. The reason
is that CUSZP2 compression requires an extra loop to obtain
the lossless encoding information (e.g. fixed-length for each
block), whereas decompression can obtain this information by
directly reading block offsets from GPU global memory.
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Fig. 15: CUSZP2 throughput analysis on 6 fields from HACC.

CUSZP2-O vs CUSZP2-P. As mentioned in Section IV-A,
we preserve both lossless encoding methods within CUSZP2
framework due to their pros and cons. CUSZP2-P is optimized
for extreme throughput, while CUSZP2-O achieves higher
compression ratios with marginally reduced throughput, due to
the fine-tuned encoding selection. However, in HACC dataset,
we found that CUSZP2-O exhibits higher throughput than
CUSZP2-P in both compression and decompression, even with
more computations. We evaluate the throughput of all 6 fields
of HACC dataset, and the results can be seen in Figure 15. For
example, in xx field, CUSZP2-O and CUSZP2-P has 315.64
and 380.36 GB/s compression throughput, respectively. The
reason is that HACC is a highly smooth dataset, making the
first element very likely to be an outlier, allowing CUSZP2-O
to have much higher compression ratios (∼2×) than CUSZP2-
P. A higher compression ratio indicates fewer amounts of data
to be processed, for example, storing fewer compressed bytes



REL CESM-ATM HACC RTM SCALE QMCPack NYX JetIn Miranda SynTruss

CUSZP2-O

1E-2 18.44∼82.41
(avg: 42.98)

11.49∼20.09
(avg: 15.50)

30.12∼104.18
(avg: 61.48)

16.80∼109.55
(avg: 46.19)

12.44∼23.57
(avg: 18.01)

14.36∼127.80
(avg: 69.14)

126.28∼126.28
(avg: 126.28)

11.10∼11.10
(avg: 11.10)

12.96∼12.96
(avg: 12.96)

1E-3 12.99∼57.45
(avg: 24.53)

5.85∼12.47
(avg: 8.82)

12.00∼84.96
(avg: 40.24)

11.10∼79.69
(avg: 29.52)

6.07∼13.29
(avg: 9.68)

10.50∼125.56
(avg: 41.75)

120.04∼120.06
(avg: 120.06)

5.98∼5.98
(avg: 5.98)

6.47∼6.47
(avg: 6.57)

1E-4 7.85∼39.01
(avg: 14.97)

3.67∼6.27
(avg: 4.84)

6.51∼67.81
(avg: 29.36)

6.31∼49.95
(avg: 17.92)

3.79∼7.25
(avg: 5.52)

5.43∼98.37
(avg: 24.12)

106.50∼106.50
(avg: 106.50)

3.80∼3.80
(avg: 3.80)

4.25∼4.25
(avg: 4.25)

FZ-GPU

1E-2 17.62∼100.02
(avg: 40.52)

N.A.
(due to bugs)

12.25∼70.09
(avg: 34.60)

16.39∼124.25
(avg: 45.21)

7.53∼19.04
(avg: 13.28)

13.38∼222.62
(avg: 86.15)

N.A.
(due to bugs)

N.A.
(due to bugs)

N.A.
(due to bugs)

1E-3 12.03∼58.03
(avg: 21.57)

N.A.
(due to bugs)

6.37∼43.76
(avg: 20.42)

10.89∼69.61
(avg: 25.39)

4.33∼12.08
(avg: 8.20)

9.81∼183.98
(avg: 42.34)

N.A.
(due to bugs)

N.A.
(due to bugs)

N.A.
(due to bugs)

1E-4 7.10∼36.03
(avg: 12.98)

N.A.
(due to bugs)

4.02∼30.7
(avg: 13.92)

7.26∼39.22
(avg: 16.16)

2.99∼8.26
(avg: 5.62)

5.98∼59.98
(avg: 16.15)

N.A.
(due to bugs)

N.A.
(due to bugs)

N.A.
(due to bugs)

cuSZp

1E-2 3.88∼69.43
(avg: 32.56)

5.28∼10.6
(avg: 7.92)

29.08∼102.73
(avg: 60.10)

3.88∼105.89
(avg: 37.76)

12.44∼22.21
(avg: 17.33)

9.6∼127.8
(avg: 66.73)

126.27∼126.27
(avg: 126.27)

4.46∼4.46
(avg: 4.46)

12.67∼12.67
(avg: 12.67)

1E-3 2.78∼39.01
(avg: 14.53)

3.45∼5.37
(avg: 4.41)

11.06∼81.90
(avg: 38.43)

2.75∼72.60
(avg: 21.11)

6.08∼10.08
(avg: 8.08)

5.09∼125.55
(avg: 38.44)

119.86∼119.86
(avg: 119.86)

3.04∼3.04
(avg: 3.04)

6.37∼6.37
(avg: 6.37)

1E-4 2.11∼24.55
(avg: 8.26)

2.53∼3.47
(avg: 3.00)

6.07∼65.04
(avg: 28.04)

2.14∼42.06
(avg: 12.34)

3.79∼5.56
(avg: 4.68)

3.35∼98.23
(avg: 22.14)

105.59∼105.59
(avg: 105.59)

2.32∼2.32
(avg: 2.32)

4.21∼4.21
(avg: 4.21)

TABLE III: Compression ratio of 3 GPU error-bounded lossy compressors. We exclude CUSZP2-P here because it has very
close compression ratios with cuSZp due to the same lossless encoding method (i.e. plain fixed-length encoding). Each cell
follows a format “min∼max (avg: XX)”, and N.A. means “not applicable”. The highest average values are highlighted.

into global memory in the compression kernel. This reduces
the overhead for accessing global memory, increasing runtime
throughput in return. We will report more detailed results about
compression ratios in Section V-C.

Memory Bandwidth Utilization. In Figure 16, we inspect
the GPU memory bandwidth utilization of CUSZP2 and other
baseline compressors. Same as the settings in Figure 9, we
profile the memory throughput of compression kernels for
all compressors on NVIDIA A100 GPU by Nsight Compute.
Similar observations can be obtained for decompression as
well. As seen, on average, CUSZP2-P and CUSZP2-O achieve
global memory throughput of 1175.34 and 1103.45 GB/s,
respectively, approaching the hardware limit of 1555 GB/s. In
the meantime, this number only ranges from 134.10 (FZ-GPU,
due to atomic operations in global synchronization) to 410.90
GB/s (cuSZp, due to strided and scalar-manner memory access
patterns). Such results highlight the efficiency of our proposed
vectorized memory accesses in CUSZP2 framework.
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Fig. 16: Memory throughput profiled on NVIDIA A100 GPU.

Examining Latency Control. We also examine the perfor-
mance of latency control in CUSZP2. Recall that the latency
in blockwise compressors is caused by global synchronization
(i.e. device-level prefix-sum while concatenating compressed
blocks), we measure the throughput of CUSZP2 synchroniza-
tion with the state-of-the-art synchronization method – single-

pass plain chained-scan [23], [52], [53]. As seen in Figure 17,
on average, our proposed fine-tuned decoupled lookback in
CUSZP2 can achieve 846.85 GB/s in synchronization (2.41×
of baseline), hiding latency successfully.
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Fig. 17: Evaluating proposed fine-tuned decoupled lookback
in CUSZP2 with state-of-the-art synchronization techniques.

Observation I: On average, CUSZP2 delivers 332.42
GB/s and 513.04 GB/s throughput for compression
and decompression, which is 2.85× of cuZFP, 2.11×
of FZ-GPU, 2.03× of cuSZp, and approximately 200×
of existing CPU-GPU hybrid compressors.

C. Compression Ratio

We evaluate compression ratios in this section. cuZFP is
excluded because it only supports fixed-rate mode, making
the compression ratio on one dataset a fixed number. Each
cell in Table III provides details for a specific compressor
on a given dataset at an error bound, formatted as “min∼max,
(avg)” to display the range and average values. We do not show
the compression ratios of CUSZP2-P, because it has similar
compression ratios (e.g. less than 0.01% differences) with
cuSZp due to the same lossless encoding method (i.e. Plain-
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Fig. 18: Isosurface visualization of all three fields in RTM dataset reconstructed by CUSZP2 (i.e. Ours mentioned in (b), (e),
and (h) figure captions) and cuZFP under the same compression ratio. For field P1000, P2000, and P3000, the compression
ratios of CUSZP2 and cuZFP are configured as ∼64, ∼30, and ∼3, respectively.

FLE). In FZ-GPU, we met bugs in launching 3D-Lorenzo
kernel while compressing several datasets, and we recorded
those cells as “N.A.” (i.e. not applicable).

Main results of compression ratio. Table III presents
compression ratio results for three error-bounded GPU lossy
compressors. As we can see, CUSZP2-O outperforms baseline
compressors and exhibits the highest compression ratios in
24/27 cases. In RTM, CUSZP2 delivers around 2× compres-
sion ratios of FZ-GPU, since CUSZP2 only preserves one
byte for a zero data block, making it exceptionally efficient
for compressing sparse datasets. Such observations are also
demonstrated in JetIn dataset. While FZ-GPU achieves the
best compression ratios in the NYX dataset at REL 1E-2 and
REL 1E-3 error bounds, this number in CUSZP2-O is 49.34%
higher than that of FZ-GPU under REL 1E-4.

Outlier-FLE vs Plain-FLE. Due to the fine-tuning se-
lection of Outlier-FLE, CUSZP2-O can always have higher
compression ratios than CUSZP2-P (see results in cuSZp).
In RTM, QMCPack, JetIn, and SynTruss datasets, the benefit
of outlier design is relatively modest – under 10%. In those
scenarios, CUSZP2-P is a better choice with higher through-
put. However, in CESM-ATM, HACC, and Miranda datasets,
where data exhibits global smoothness, Outlier-FLE proves
to be significantly more effective. In one field of CESM-
ATM, CUSZP2-O even achieves a ∼6× compression ratio
than CUSZP2-P. The drastically optimized compression ratios
also reduce memory access overhead when writing compressed
data to global memory, explaining why CUSZP2-O sometimes
has better throughput than CUSZP2-P.

Observation II: Despite higher throughput, CUSZP2
achieves the best compression ratios in 24/27 cases
compared with state-of-the-art error-bounded GPU
compressors. While compressing datasets with global
smoothness, CUSZP2-O is better than CUSZP2-P.

D. Data Quality

We evaluate reconstructed data quality in this section. In
general, there are two metrics to evaluate data quality for a
lossy compressor: rate-distortion curve and visualization. Rate-
distortion curves quantitatively measure the quality of recon-
structed datasets (using metrics like PSNR [65] or SSIM [66])
at the same compression ratios. Higher values of PSNR and
SSIM indicate better data quality provided by the compressor.

CUSZP2 vs Error-bounded GPU Compressors. FZ-GPU,
cuSZp, and CUSZP2 (including cuSZ) share the same lossy
step, which rounds or ceils floating point data into quantization
integers. In other words, given the same error bound, these
compressors will generate the same reconstructed data – the
only difference is the compressed data size, which is decided
by different lossless encoding strategies. Since CUSZP2 has
proved higher compression ratios under the same error bound
(see Table III), we know it should have the best rate-distortion
curves among all error-bounded GPU lossy compressors.

CUSZP2 vs cuZFP. Based on orthogonal transformation
and embedded coding, cuZFP has been proved to deliver
notably high reconstructed data quality in both rate-distortion
curves [22], [23] and visualization [28]. However, cuZFP pos-
sibly corrupts original data patterns when compression ratios
are aggressive. In Figure 18, we reconstruct each field in RTM
dataset by cuZFP and CUSZP2 with the same compression
and visualize their isosurfaces. In P1000 and P2000, when
the compression ratios are ∼64 and ∼30, cuZFP corrupts the
original images (see Figure 18(c) and 18(f)), whereas CUSZP2
almost preserves identical features due to error control (see
Figure 18(b) and 18(e)). In P3000, the compression ratio
is reduced to ∼3, and both cuZFP and CUSZP2 achieve
high visualization quality (see Figure 18(h) and 18(i)). This
demonstrates CUSZP2’s ability in preserving data quality.

Observation III: CUSZP2 preserves high-quality iso-
surfaces in reconstructed data (even with high com-
pression ratios) and exhibits the best rate-distortion
curves among GPU error-bounded lossy compressors.

VI. DISCUSSION OF CUSZP2

A. Double-Precision Support

Datasets Suite Dims per Field # Fields Total Size

S3D [67] SDRBench 11×500×500×500 5 51.22 GB
NWChem [68] SDRBench 801,098,891 1 5.96 GB

TABLE IV: Real-world double-precision HPC datasets.

Besides single-precision HPC datasets in Table II, CUSZP2
also supports compression for double-precision datasets. As
seen in Table IV, we select NWChem (computational chem-
istry) and S3D (combustion simulation) from SDRBench [55]
for evaluation, and the main results can be found in Figure 19
and Table V. On average, CUSZP2-P achieves a compression



throughput of 612.83 GB/s and a decompression throughput
of 780.33 GB/s, while CUSZP2-O records slightly higher rates
of 628.54 GB/s for compression and 809.71 GB/s for decom-
pression. This is around 2× of processing single-precision
datasets. The efficiency of handling double-precision formats
in CUSZP2 is attributed to its lossy conversion process, which
translates both single- and double-precision data points into
quantization integers. Since the subsequent lossless encod-
ing computations remain unchanged, this uniform treatment
enhances the processing efficiency of double-precision data
within CUSZP2. In Table V, we observe CUSZP2-O achieves
around 3× compression ratios of CUSZP2-P in S3D at REL
1E-4, and this is because global smoothness exists in S3D
dataset, as explained in Section V-C.
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Fig. 19: CUSZP2 throughput for double-precision datasets.
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O NWChem S3D

1E-2 82.51 44.28 82.51 89.85
1E-3 26.85 21.71 26.87 56.51
1E-4 13.73 12.64 13.74 37.48

TABLE V: Compression ratios of double-precision datasets.

B. Random Access Support

Since CUSZP2 compresses HPC datasets at block granu-
larity, it supports random accesses to the compressed data.
This process can be conducted by reading block offsets and
performing global synchronization in the CUSZP2 decom-
pression kernel. In Figure 20, we evaluate the throughput of
accessing one arbitrary data block for all datasets in Table II,
whereas accessing multiple blocks and random access write
have similar results. As seen, CUSZP2 has 1010.07 GB/s
throughput on average, varying from 793.14 GB/s in Scale
to 1305.32 GB/s in JetIn. This high throughput of random
access in CUSZP2 will benefit multiple HPC scenarios, such
as cosmic ray propagation [69].

C. Compatibility with Other NVIDIA GPUs

Besides NVIDIA A100 (40 GB) GPU, we also check
the compatibility of CUSZP2 and baseline compressors by
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Fig. 20: The throughput of random accessing one arbitrary
data block in CUSZP2, measured with REL 1E-4 error bound.

evaluating throughput for other NVIDIA GPUs, including
RTX 3090 and RTX 3080 (10 GB) that are commonly used
in HPC community [70]–[74]. We use P3000 field in RTM as
an example, and similar observations can be obtained in all
other datasets. Note that the throughput of all compressors is
averaged across three error settings mentioned in Section V-B.
As shown in Figure 21, CUSZP2 achieves 232.45 and 405.09
GB/s throughput for compression and decompression on 3090
GPU, and these two numbers are 180.94 and 329.62 GB/s on
3080 GPU. In all, CUSZP2 consistently achieves around 2×
throughput than all baseline compressors, demonstrating our
optimization is generic across different platforms.
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Fig. 21: Evaluating throughput on other NVIDIA GPUs.

D. Rationale for 1D Data Processing
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Fig. 22: Explaining 1D, 2D, and 3D first-order difference.

As mentioned in Section III, CUSZP2 processes data in a
1D manner with a first-order difference. However, some other
compressors [3], [18], [20], [22] use higher dimensional (e.g.
2D and 3D) differences, also called Lorenzo Prediction, to
remove redundant bit patterns in this literature. We illustrate
multi-dimensional first-order differences in Figure 22. While
1D processing necessitates computations only with preceding
values, 2D and 3D processing involve calculations with 3 and 7
adjacent data points, respectively. Multi-dimension operations
not only introduce extra computations and complex partial-
sum in decompression but also significantly complicate mem-
ory access patterns, downgrading throughput drastically (>
50%) in return. In Table VI, we also implement CUSZP2 with
multi-dimensional designs and report their compression ratio.
It is true CUSZP2-2D and CUSZP2-3D exhibit higher com-
pression ratios in some cases, however, this benefit becomes



limited for non-sparse dataset (e.g. P3000) with conservative
error bounds (e.g. REL 1E-3 and 1E-4). This demonstrates the
rationale of 1D processing in CUSZP2. The 1D design is also
observed in an industry-level closed-source compressor [75].

REL P1000 P2000 P3000

CUSZP2-1D
1E-2 158.12 49.61 27.53
1E-3 110.05 22.38 11.19
1E-4 78.97 12.72 6.11

CUSZP2-2D
1E-2 176.65 65.72 34.26
1E-3 124.80 25.21 11.29
1E-4 92.04 14.31 6.22

CUSZP2-3D
1E-2 176.11 66.26 33.65
1E-3 125.14 24.87 10.96
1E-4 93.03 14.38 6.19

TABLE VI: Explaining the rationale of 1D data processing by
compressing 3 RTM fields with multi-dimensional CUSZP2
(with outlier encoding). To be fair, the block size for 1D, 2D,
and 3D CUSZP2 are 64, 8×8 (=64), and 4×4×4 (=64).

E. Breakdown Throughput Gain Analysis
To quantify the throughput gains, we conduct an ablation

study by individually disabling each throughput-related factor
in CUSZP2 and assessing the impact. On average, memory
optimization and latency hiding contribute to the throughput
gains by 56.23% and 41.29%, respectively. In the meanwhile,
CUSZP2 is equipped with other optimizations, such as inline
parallel thread execution (PTX) assembly and loop unrolling.
While the former is a CUDA feature that allows assembly-
like instructions to be inlined directly within CUDA code
(one example see Figure 23), the latter reduces the number
of loop iterations by multiple copies within the loop body.
Both target better utilization of GPU hardware resources,
to improve CUSZP2 runtime throughput. However, based on
our testing, their benefits are trivial (<3%) compared to the
primary designs and will not be discussed in details here.

asm(...
    "mul.f32 dataRecip, %1, %2;\n\t"
    "setp.ge.f32 p, dataRecip, -0.5;\n\t"
    "selp.s32 s, 0, 1, p;\n\t"
    ...)

...
float dataRecip = data * recipPrecision;
int s = dataRecip >= -0.5f ? 0 : 1;
...

Ori. C-Style 
CUDA code

Inline PTX 
Assembly

Fig. 23: Illustration of inline PTX assembly. This code seg-
ment is from the Lossy Conversion stage (i.e. ➊ in Figure 4).

VII. RELATED WORKS

A. Error-bounded Lossy Compression
Error-bounded lossy compression, with much higher com-

pression ratios than lossless ones, is proposed to benefit HPC
by introducing user-controllable errors [2]–[4], [28], [57],
[76]–[79]. Among such, two notable lossy compressors are
SZ [2]–[4] and ZFP [28]. SZ is a prediction-based com-
pressor composed of four major steps: data prediction (e.g.
Lorenzo [3], Regression [4], [80], and Interpolation [81] pre-
dictions), linear-scale quantization, variable-length encoding,
and dictionary encoding. ZFP is a transform-based compressor
that processes at block granularity, involving various align-
ments, orthogonal transforms, and embedded encoding.

B. Data Compression on NVIDIA GPU

Data compression within NVIDIA GPU can achieve much
higher throughput and is hence widely explored in HPC
community in the past decade [18]–[20], [22], [23], [82], [83].
O’Neil et al. [82] proposed GFC, a lossless compressor for
double-precision datasets, achieving 75 GB/s throughput at
NVIDIA FX 5800 GPU. Lindstrom [28] implemented ZFP
into GPU [21], preserving high throughput and promising
visualization quality. Tian et al. [18] proposed cuSZ, the first
prediction-based GPU error-bounded lossy compressor. Zhang
et al. [22] improved cuSZ with pure-GPU designs and a novel
lossless encoding method, balancing between throughput and
compression ratio. While existing works suffer from either
limited throughput or compatibility, CUSZP2 achieves both
with optimized compression ratios and high data quality.

C. Compression on Other Heterogeneous Processors

Other than NVIDIA GPUs, data compression algorithms
are also implemented in other heterogeneous processors, such
as AMD GPU, FPGA, and DPU, to assist multiple HPC
scenarios [84]–[90]. Tian et al. [84] explored a hardware and
algorithm co-design and proposed waveSZ to manage data
within FPGA. Tavana et al. [88] adopts data compression on
a multi-AMD-GPU system to improve both energy and per-
formance efficiency. There are some other compressors [85],
[86] that are based on emerging AI chips – Cerebras [91].
Song et al. [85] enabled and scaled an error-bounded lossy
compression algorithm on the Cerebras CS-2 system. Although
it achieves promising throughput (around 500 GB/s), its com-
patibility with existing HPC simulations and machine learning
frameworks remains an open question.

VIII. CONCLUSION

In this work, we propose CUSZP2, a GPU error-bounded
lossy compressor targeting extreme throughput and optimized
compression ratios. Specifically, CUSZP2 compressor features
outlier fixed-length encoding, vectorized memory access pat-
terns, and latency control with decoupled lookback. Based
on evaluations from 9 real-world HPC datasets, on average,
CUSZP2 exhibits 332.42 and 513.04 GB/s end-to-end through-
put on NVIDIA A100 GPU for compression and decompres-
sion, respectively. Compared with state-of-the-art pure-GPU
compressors such as cuZFP, FZ-GPU, and cuSZp, CUSZP2
achieves ∼2× throughput and the highest compression ratios.
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Appendix: Artifact Description/Artifact Evaluation
Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

C1 We summarize the drawbacks of existing GPU lossy
compressors and redefine the appropriate metrics for
evaluating lossy compressors on GPU.

C2 We propose and implement a new GPU error-
bounded lossy compressor called cuSZp21, with ex-
treme throughput and optimized compression ratios,
by integrating a novel lossless encoding method, op-
timized memory access patterns, and latency control.

C3 We evaluate cuSZp2 with three state-of-the-art pure
GPU compressors from three perspectives, including
throughput, compression ratios, and data quality.

C4 We propose four important use cases and evaluate
cuSZp2, including double-precision support, random
access support, lower-end GPU support, and a multi-
dimensional version of cuSZp2.

B. Computational Artifacts

The AD/AE version of the artifact can be downloaded
through the following Links.

A1 https://github.com/hyfshishen/SC24-cuSZp22 and its
corresponding generated persistent Zenodo DOI
https://zenodo.org/doi/10.5281/zenodo.13315525.

Artifact Contributions Related
ID Supported Paper Elements

A1 C1 Sec. II
A1 C2 Sec. IV
A1 C3 Sec. V
A1 C4 Sec. VI

II. ARTIFACT IDENTIFICATION

A. Computational Artifact A1

Relation To Contributions

The artifact includes the source code of the proposed ultra-
fast error-bounded GPU compressor – cuSZp2. All four major
contributions identified in this work are based on the proposed
cuSZp2, including (1) strict throughput measurement, (2)
optimized implementation, (3) comprehensive measurements,
and (4) proposed use cases (e.g. random access support).

1cuSZp2 follows a similar 4-stage compression pipeline compared with
cuSZp – so that we decided to name it as cuSZp2. However, the implemen-
tation and algorithm of each stage in cuSZp2 are significantly different.

2This repository is only for AD/AE purposes (e.g. including the execution
script for each discussion subsection). The publicly available version for
cuSZp2 can be found in GitHub Link: https://github.com/szcompressor/cuSZp.

Expected Results

After compiling the cuSZp2 code and executing the gener-
ated binary, the results will be printed in the command line
environment. Note that we integrate the time measurement
inside the code. All results should be consistent with what
is reported in the paper. Specifically:

1) The best throughput of all existing GPU compressors.
2) Higher compression ratios than FZ-GPU and cuSZp.
3) Better isosurface visualization compared with cuZFP.

Note that all baseline compressors, including FZ-GPU, cuSZp,
and cuZFP, along with adopted HPC datasets (SDRBench and
Open-SciVis), are publicly available.

Expected Reproduction Time

The major goal of GPU compression is throughput, so a
single pass for compression and decompression in cuSZp2 on
all datasets can be executed within several seconds. However,
compilation, measurement, and visualization may take differ-
ent efforts. These efforts are explained below:

• Compilation: Several minutes for cuSZp2 repository.
• Throughput: Several seconds for one compressor on one

field of one dataset (including passing data to GPU,
kernel execution, and printing all required information).

• Compression Ratio: Several seconds for one compressor
on one field of one dataset. The same as throughput.

• Data Quality: We visualize the isosurface to evaluate
reconstructed data quality using Mayavi, a Python-based
tool. One RTM field may take around 10 minutes.

Artifact Evaluation (AE)
In this section, we will provide the detailed steps to repro-

duce paper results. The required code is updated in a GitHub
repository mentioned before. For simplicity, we will use the
name GSZ (the name of cuSZp2 in the paper submission
version) in this section – they here refer to the same thing.
For the two encoding mode, GSZ-P and GSZ-O denote, GSZ
with plain and outlier fixed-length encoding, respectively.

Artifact Setup (incl. Inputs)

■ Hardware: Most evaluations are conducted on NVIDIA
Ampere A100 GPU (40 GB). The compatibility for lower-end
GPU (in the Discussion Section) requires NVIDIA RTM 3090
and NVIDIA RTM 3080 (10 GB) GPUs.
■ Software:

• Git 2.15 or newer
• CMake 3.21 or newer
• CUDA Toolkit 11.0 or newer
• No requirement for GCC, better with 7.0 and newer
• Python3 and Mayavi Package.



■ Datasets: The metadata (including dimension) of each
dataset can be found in Table I. Downloading information for
each dataset can be found in the bullet point below:

• SDRBench datasets can be found in LINK.
– CESM-ATM: Download-Link
– HACC: Download-Link
– RTM: We exclude RTM due to confidential issues.
– SCALE: Download-Link
– QMCPack: Download-Link
– NYX: Download-Link

• Open-SciVis datasets can be found in LINK.
– JetIn: Download-Link
– Miranda: Download-Link
– SynTruss: Download-Link

The dataset can be downloaded using wget command.

Datasets Suite Dims per Field # Fields Total Size

CESM-ATM SDRBench 3600×1800×26 33 20.71 GB
HACC SDRBench 1,073,726,487 6 23.99 GB
RTM SDRBench 1008×1008×352 3 3.99 GB
SCALE SDRBench 1200×1200×98 12 6.31 GB
QMCPack SDRBench 69×69×33120 2 1.17 GB
NYX SDRBench 512×512×512 6 3.00 GB
JetIn Open-SciVis 1408×1080×1100 1 6.23 GB
Miranda Open-SciVis 1024×1024×1024 1 4.00 GB
SynTruss Open-SciVis 1200×1200×1200 1 6.42 GB

TABLE I
METADATA FOR REAL-WORLD HPC DATASETS USED IN THIS WORK.

■ Installation and Deployment of cuSZp2:
1 # Step 1: Download cuSZp2 source code

2 git clone https://github.com/hyfshishen/SC24-cuSZp2.git

3

4 # Step 2: Go to target building directory

5 cd SC24-cuSZp2/main-results && mkdir build && cd build

6

7 # Step 3: Prepare makefile using CMake.

8 cmake -DCMAKE_BUILD_TYPE=Release \

9 -DCMAKE_INSTALL_PREFIX=../install ..

10

11 # Step 4: Make and Install

12 make -j && make install

You can see two executable binary gsz_p and gsz_o
generated in folder main-results/install/bin/ .
These two executable binary represent GSZ-P and GSZ-O
mentioned in paper (for Figure 14, Table III, and Figure 21).

Artifact Execution

We use HACC dataset and GSZ-P as an example. GSZ-O
will be executed in the exactly same way. Besides, since all
fields in one dataset will exhibit similar throughput and con-
sistent compression ratios, so executing one field to showcase
the results and compressibility of GSZ compressor.

Given an error bound REL 1E-3 and field vx.f32 ,
GSZ-P can compress it by command:

1 cd main-results/install/bin/

2

3 ./gsz_p vx.f32 1e-3

4 # 1e-3 here denotes the relative error bound;

5 # you can also set it as 0.001.

After that, you can see output as below:
1 GSZ finished!

2 GSZ compression end-to-end speed: 359.554510 GB/s

3 GSZ decompression end-to-end speed: 437.775719 GB/s

4 GSZ compression ratio: 5.365436

5

6 Pass error check!

• The compression end-to-end speed (i.e. throughput) re-
flects to the HACC bar mentioned in Figure-14-(c).

• The decompression end-to-end speed (i.e. throughput)
reflects to the HACC bar mentioned in Figure-14-(d).

• The compression ratio is reported in Table III.
• If you are executing those scripts in other GPUs, such

as 3080 and 3080. The throughput that reported denote
Figure-21.

• The Pass error check! is the interal error bound checking.
Other datasets and GSZ-O will work in the same way.

Artifact Oneline Execution

##### Reproducing MAIN Results #######
In this part, we can reproduce all experiments about Figure

14 and Table III with several wrap-up python (version 3+)
command lines, including:

• Dataset prepartion.
• GSZ compilation.
• Execution and results observation.
The three procedures are described in the code block below.

1 # Step 1: Dataset preparation

2 cd SC24-cuSZp2/

3 python dataset-preparation.py

4 # After that, all datasets will be prepared in the folder

5 # SC24-cuSZp2/dataset, and we can go to the next step.

6

7 # Step 2: GSZ compilation

8 cd SC24-cuSZp2/main-results

9 python 0-compilation.py

10 # After that, the compilation of GSZ will be finished,

11 and we can go to the next step (execution).

12

13 # Step 3: GSZ execution

14 cd SC24-cuSZp2/main-results # The same folder as Step 2.

15 python 1-execution.py ERROR-BOUND-YOU-WANT-TO-EXECUTE

16 # python 1-execution.py 1E-2

17 # python 1-execution.py 1E-3

18 # python 1-execution.py 1E-4

After the execution, you can observe an output. We
use python 1-execution.py 1E-3 to understand
such output. After that, you can see a generated output as
shown in the following code block.

1 ====================================================

2 Done with Execution GSZ-P and GSZ-O on cesm_atm under 1e-3

3 GSZ-P compression throughput: 267.28176896969694 GB/s

4 GSZ-P decompression throughput: 395.9575038787878 GB/s

5 GSZ-P max compression ratio: 39.039537

6 GSZ-P min compression ratio: 2.776141

7 GSZ-P avg compression ratio: 14.53542281818182

8

9 GSZ-O compression throughput: 256.82364506060605 GB/s

10 GSZ-O decompression throughput: 409.47252312121213 GB/s

11 GSZ-O max compression ratio: 57.453092



12 GSZ-O min compression ratio: 12.995819

13 GSZ-O avg compression ratio: 24.53496509090909

14 ====================================================

15

16 ====================================================

17 Done with Execution GSZ-P and GSZ-O on hacc under 1e-3

18 GSZ-P compression throughput: 339.03042400000004 GB/s

19 GSZ-P decompression throughput: 431.46155999999996 GB/s

20 GSZ-P max compression ratio: 5.365436

21 GSZ-P min compression ratio: 3.451861

22 GSZ-P avg compression ratio: 4.405594000000001

23

24 GSZ-O compression throughput: 344.9251053333334 GB/s

25 GSZ-O decompression throughput: 459.2428156666667 GB/s

26 GSZ-O max compression ratio: 12.470066

27 GSZ-O min compression ratio: 5.851711

28 GSZ-O avg compression ratio: 8.823446833333334

29 ====================================================

30

31 ====================================================

32 Done with Execution GSZ-P and GSZ-O on scale under 1e-3

33 GSZ-P compression throughput: 240.40884108333333 GB/s

34 GSZ-P decompression throughput: 335.2613445 GB/s

35 GSZ-P max compression ratio: 72.598979

36 GSZ-P min compression ratio: 2.750328

37 GSZ-P avg compression ratio: 21.11330458333333

38

39 GSZ-O compression throughput: 250.15284741666665 GB/s

40 GSZ-O decompression throughput: 316.6550965833334 GB/s

41 GSZ-O max compression ratio: 79.695224

42 GSZ-O min compression ratio: 11.102816

43 GSZ-O avg compression ratio: 29.52363491666667

44 ====================================================

45

46 ====================================================

47 Done with Execution GSZ-P and GSZ-O on qmcpack under 1e-3

48 GSZ-P compression throughput: 236.19716549999998 GB/s

49 GSZ-P decompression throughput: 315.8376475 GB/s

50 GSZ-P max compression ratio: 10.075567

51 GSZ-P min compression ratio: 6.076028

52 GSZ-P avg compression ratio: 8.0757975

53

54 GSZ-O compression throughput: 183.3123765 GB/s

55 GSZ-O decompression throughput: 319.8198355 GB/s

56 GSZ-O max compression ratio: 13.296692

57 GSZ-O min compression ratio: 6.077027

58 GSZ-O avg compression ratio: 9.6868595

59 ====================================================

60

61 ====================================================

62 Done with Execution GSZ-P and GSZ-O on nyx under 1e-3

63 GSZ-P compression throughput: 244.1977426666667 GB/s

64 GSZ-P decompression throughput: 305.4707613333333 GB/s

65 GSZ-P max compression ratio: 125.551299

66 GSZ-P min compression ratio: 5.090097

67 GSZ-P avg compression ratio: 38.44212666666666

68

69 GSZ-O compression throughput: 244.53299016666665 GB/s

70 GSZ-O decompression throughput: 326.64762433333334 GB/s

71 GSZ-O max compression ratio: 125.560284

72 GSZ-O min compression ratio: 10.501972

73 GSZ-O avg compression ratio: 41.756694333333336

74 ====================================================

75

76 ====================================================

77 Done with Execution GSZ-P and GSZ-O on jetin under 1e-3

78 GSZ-P compression throughput: 559.848637 GB/s

79 GSZ-P decompression throughput: 2626.161979 GB/s

80 GSZ-P max compression ratio: 119.858277

81 GSZ-P min compression ratio: 119.858277

82 GSZ-P avg compression ratio: 119.858277

83

84 GSZ-O compression throughput: 554.342144 GB/s

85 GSZ-O decompression throughput: 2658.088986 GB/s

86 GSZ-O max compression ratio: 120.064674

87 GSZ-O min compression ratio: 120.064674

88 GSZ-O avg compression ratio: 120.064674

89 ====================================================

90

91 ====================================================

92 Done with Execution GSZ-P and GSZ-O on miranda under 1e-3

93 GSZ-P compression throughput: 297.81917 GB/s

94 GSZ-P decompression throughput: 420.187394 GB/s

95 GSZ-P max compression ratio: 3.038741

96 GSZ-P min compression ratio: 3.038741

97 GSZ-P avg compression ratio: 3.038741

98

99 GSZ-O compression throughput: 330.657079 GB/s

100 GSZ-O decompression throughput: 423.426028 GB/s

101 GSZ-O max compression ratio: 5.981446

102 GSZ-O min compression ratio: 5.981446

103 GSZ-O avg compression ratio: 5.981446

104 ====================================================

105

106 ====================================================

107 Done with Execution GSZ-P and GSZ-O on syntruss under 1e-3

108 GSZ-P compression throughput: 319.446766 GB/s

109 GSZ-P decompression throughput: 317.919891 GB/s

110 GSZ-P max compression ratio: 6.371377

111 GSZ-P min compression ratio: 6.371377

112 GSZ-P avg compression ratio: 6.371377

113

114 GSZ-O compression throughput: 354.674088 GB/s

115 GSZ-O decompression throughput: 485.769935 GB/s

116 GSZ-O max compression ratio: 6.470316

117 GSZ-O min compression ratio: 6.470316

118 GSZ-O avg compression ratio: 6.470316

119 ====================================================

To understand such results.
• ”1E-3” denotes throughput in Fig.14 (c) and (d) (whereas

”1E-2” denote (a) and (b), ”1E-4” denote (e) and (f)).
• For the throughput, you may observe a similar number

as the bar shown in Figure 14.
• For the compression ratio, you may observe the number

as reported in Table III.
• For the baseline compressors, our evaluations are consis-

tent with existing works (e.g. cuSZp and FZ-GPU). So
that they can be directly found in Figure itself.

##### Reproducing RTM Results ########
In this part, we can reproduce all experiments related to

RTM dataset within just several scripts. Note that the link to
this dataset is not directly provided in this repository due to
confidential issues – it can only be accessed internally in the
AD-AE discussion. Assuming we already have our datasets,
the execution step of this phase includes:

• GSZ compilation.
• Execution and results observation. (this step can repro-

duce the results about throughput and compression ratio
in Figure.14 and Table.III)

Since RTM dataset only has three fields: pressure 1000,
pressure 2000, and pressure 3000, the dataset preparation



steps are described in the text below. In all, the execution to
reproduce all experiments is shown as the code block below.

1 # Step 0: Dataset preparation

2 cd SC24-cuSZp2/rtm-evaluation-results/

3 # Download pressure_1000, pressure_2000,

4 # and pressure_3000 manually from Google Drive.

5 # After that, when you list all files in this folder,

6 # all files should be arranged as below.

7 ls

8 1-compilation.py 2-execution.py 3-visualization.py cmake

9 CMakeLists.txt Config.cmake.in examples include

10 pressure_1000 pressure_2000 pressure_3000 src

11

12 # Step 1: GSZ compilation

13 python 1-compilation.py

14 # After that, the compilation of GSZ will be finished,

15 # and we can go to the next step (execution).

16

17 # Step 3: GSZ execution

18 python 2-execution.py

19 # After that, both GSZ-P and GSZ-O compression will be

20 # conducted under the error bound 1E-2, 1E-3, and 1E-4.

After the execution, results similar to the code block shown
below can be seen (such results are still measured on A100).

1 =====================================

2 GSZ-O 1E-3 Execution on Pressure_1000

3 =====================================

4 GSZ finished!

5 GSZ compression end-to-end speed: 469.758409 GB/s

6 GSZ decompression end-to-end speed: 1146.214499 GB/s

7 GSZ compression ratio: 84.968878

8

9 Pass error check!

10

11 =====================================

12 GSZ-O 1E-3 Execution on Pressure_2000

13 =====================================

14 GSZ finished!

15 GSZ compression end-to-end speed: 399.663872 GB/s

16 GSZ decompression end-to-end speed: 625.772303 GB/s

17 GSZ compression ratio: 23.767280

18

19 Pass error check!

20

21 =====================================

22 GSZ-O 1E-3 Execution on Pressure_3000

23 =====================================

24 GSZ finished!

25 GSZ compression end-to-end speed: 336.690098 GB/s

26 GSZ decompression end-to-end speed: 464.315184 GB/s

27 GSZ compression ratio: 12.002271

28

29 Pass error check!

##### Reproducing Double-Precision #####
In this part, we can reproduce all experiments related to

double-precision datasets within just several scripts. Note that
the data preparation step may take some time since S3D
dataset is more than 50 GB, and downloading it may take
some time. More information about the evaluated two double-
precision datasets (both are from SDRBench) can be found in
the table below.

It is worth mentioning that, similar to previous sections,
all provided scripts executed in Python are still under Python
3.0+. Specifically, the scripts include:

Datasets Suite Dims per Field # Fields Total Size

S3D SDRBench 11×500×500×500 5 51.22 GB
NWChem SDRBench 801,098,891 1 5.96 GB

TABLE II
REAL-WORLD DOUBLE-PRECISION HPC DATASETS.

• Dataset prepartion.
• GSZ compilation.
• Execution and results observation. (this step can repro-

duce the results)
Specifically, the first three procedures are explained in the code
block below.

1 # Step 1: Dataset preparation

2 cd SC24-cuSZp2/double-precision-results

3 python 0-dataset-preparation.py

4 # This step may take some time,

5 # since s3d dataset is more than 50 GB.

6

7 # Step 2: GSZ compilation

8 python 1-compilation.py

9 # After that, the compilation of GSZ will be finished,

10 # and we can go to the next step (execution).

11

12 # Step 3: GSZ execution

13 python 2-execution.py ERROR-BOUND-YOU-WANT-TO-EXECUTE

14 # There are 3 error-bounds, so the demo input includes:

15 # python 2-execution.py 1E-2

16 # python 2-execution.py 1E-3

17 # python 2-execution.py 1E-4

After the execution, you can observe an output. We will
then use python 2-execution.py 1E-2 to understand
such output. After that, you can see a generated output as
shown in the following code block.

1 ====================================================

2 Done with Execution GSZ-P and GSZ-O on nwchem under 1e-2

3 GSZ-P compression throughput: 652.95619 GB/s

4 GSZ-P decompression throughput: 2350.036331 GB/s

5 GSZ-P max compression ratio: 82.506696

6 GSZ-P min compression ratio: 82.506696

7 GSZ-P avg compression ratio: 82.506696

8

9 GSZ-O compression throughput: 656.172996 GB/s

10 GSZ-O decompression throughput: 2326.732979 GB/s

11 GSZ-O max compression ratio: 82.51842

12 GSZ-O min compression ratio: 82.51842

13 GSZ-O avg compression ratio: 82.51842

14 ====================================================

15

16 ====================================================

17 Done with Execution GSZ-P and GSZ-O on s3d under 1e-2

18 GSZ-P compression throughput: 678.3954736 GB/s

19 GSZ-P decompression throughput: 1221.6985906 GB/s

20 GSZ-P max compression ratio: 44.289605

21 GSZ-P min compression ratio: 44.273392

22 GSZ-P avg compression ratio: 44.2824034

23

24 GSZ-O compression throughput: 712.9922364 GB/s

25 GSZ-O decompression throughput: 1318.336099 GB/s

26 GSZ-O max compression ratio: 90.287397

27 GSZ-O min compression ratio: 89.566029

28 GSZ-O avg compression ratio: 89.8573926

29 ====================================================
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