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Big Data Issue in Modern HPC Systems

m Modern HPC systems generate massive data volumes at rapid speeds.
m High memory footprint: Seismic imaging methods.
m Intensive data streams: X-ray source applications.

m Expensive data movement overheads: Large Language Model (LLM) training.

p

Reverse Time Migration!" LCLS-11, 20242 LLaMA LLM, 20238
2.8 PB Simulation Data 250GB/s~ 1TB/s 2,048 x A100 GPUs

10x10x8 km3 per Snapshot Data Generation Speed 1.3 T Tokens & 65 B Parameters

[1] [Reverse Time Migration Technology] https://www.seismiccity.com/RTM.html

[2] [LCLS-Il @ SLAC] https:/icls.slac.stanford.edu/lcls-ii
[3] [LLaMA @ Meta] https://llama-2.ai/llama-2-model-details/
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In-situ Data Compression

m Directly compress/decompress data where it is generated/processed.

m CMP and DEC here refers to “compression” and “decompression”.

C Only Preserving D
M = Compressed Data —9»>| E
P in Runtime C

Succ. HPC Simulation
or LLM Training

Prev. HPC Simulation
or LLM Training

m Two key requirements for in-situ data compression tasks.
m Throughput: compression and decompression speed, the faster the better.

m Compression ratio: ori. data size/cmp. data size, the higher the better.

&.;? We need a fast and high-ratio compressor, but how?




GPU Lossy Compression

m GPU Lossy Compression excels in in-situ compression tasks due to:

m GPU: Entensive parallelism makes high throughput possible.

m Lossy Compression: Offers much higher compression ratio than lossless ones.

Lossless Cmp. Lossy Cmp. ¢

CPU GPU Ori. Data

Encoding phase of SZx!
~10 GB/s CPU vs ~200 GB/s GPU

Make such “lossy” acceptable to
HPC by error-bounded.

[1] [HPDC’22] Ultrafast Error-bounded Lossy Compression for Scientific Datasets



Challenge 1: Parallel Architecture Constraints

m GPU parallelism drastically complicates the compression algorithm designs.

m Taking Huffman Encoding as an example. Given string array AAABBCD.

j Root
Al3 Al O AAABBCD

B2 A BCD Ne B[ 10 l

Cl1 B / CD \ C | 110

D 1 D | 111 000101011011111

C D
Step1: Step2: Step3: Step4:
Generating Constructing Building Huffman Compression
Frequency Table Huffman Tree Codebook
. J

Y

One table/tree/codebook for entire array, Easy to parallel,

but read/write

requiring frequent global synchronization. conflict exists.




Challenge 2: Complex Memory Access Patterns

m Unlike CPU, GPU is highly sensitive to memory access behaviors.

m Taking a simple 2D-Lorenzo Prediction as an example.

i-1,j-1 i, j-1

i1, ij S
Use 3 spatially adjacent data Computer system stores all arrays in 1D manner.
points to predict current one. Not adjacent anymore!

Strided memory access, drastically reducing throughput.



Challenge 3: Latency in Resolving Linear Recurrence

% Thread 0 % Thread 1 % Thread 2 % Thread 3

Ori. Array | | | |
(Divided into? J‘\ AN e 7
Blocks) \ RN A N !
\ K AN R4 AR ,’ \ ,  Stepl:
\ /
Each Y . Parallel Cmp.

Compressed '
Block LO L3

. @ @ Step2:
Starting Index of Generating Index
Each Compresed 0 LO+L LO+L1+L2

Block

Based on
Linear Recurrence! those indexes. Step3:

Block Concat.

Yn = Yn-1+Xn

Output: A Single, Unified Compressed Array



Limitations of Existing Solutions

cuSZ, cuSZx, Fail to address Challenge 1, using
MGARD-GPU, etc. CPU-GPU hybrid design instead.
cuZFP, FZ-GPU, Fail to address Challenge 2, leading to
cuSZp, etc. inefficient memory access patterns.

Fail to address Challenge 3, resulting in

FASGIPD, @A, Gt high latency in block concatenation.

Efficient
Memory
Access

Low
Sync.

Pure-GPU

Error High CMP

Wishlist

Control Ratio

Design

Latency

Y

Guaranteeing High Throughput 8



Our Solution: cuSZp2

Input Output
Original S Z 2 Compressed
Data Array |:> C u p |:> Data Array

An Error-bounded GPU Lossy Compressor

Key Features of cuSZp2

m Compression/decompression requires only one GPU kernel function.
m Highly efficient latency control and memory access patterns - extreme throughput.
m Two encoding modes, high compression ratio for different data patterns.

m Error-bounded lossy compression, ensuring high reconstructed data quality.



cuSZp2: Algorithm and Running Example

m cuSZp operates at block granularity and requires four steps to perform compression.

o Lossy

9 Lossless

_9 Global

P Block

3 * 3
Conversion Encoding Prefix-sum Concat.
/v 112 | 1.31 | 246 | 1.14 | 3.15 | 3.13 | 2.17 | 1.41
F/ 6 7 2] 6 [16]16][11] 7 )0

A weather simulation HPC field
(blockSize = 8)

Index in final

{w compressed array

A running example to show how cuSZp2 compresses an HPC dataset. 10



cuSZp2: Lossless Encoding Method

m Motivation: a natural defect in processing HPC fields by parallel compressors.

O o RrRr b OO -, ©

slofolo]s]olo]o]| (00 '.____||
.§ Quantization Integers ':' C]=-[TTTTI |!.;
q:) of Selected Data Block [ ([T T 111 [ |!
§ 8100-1100'1’ []- II
> Quantization Integers ~, ! |LJ=[LLLLT] ||.:
§ After First-Order Diff. Vo \O-CC T T
§81001100’ (-[TTTTTI,

ABS. Quantization Integers "~ Cl-L LT T TTT |:

High-Smoothness of HPC Dataset After First-Order Diff. ABS. Integers in Bits

In blockwise parallel compressors, while processing smooth HPC fields,

the first integer is usually much greater than the rest, making it an outlier.




cuSZp2: Lossless Encoding Method

m Fixed-length encoding (FLE) preserves the same number of bits for each integer.

m IncuSZp2, both modes (Plain-FLE and Outlier-FLE) are preserved.

EREEEE EEN R C-C LT T L s
- EI (11 -~ I
O-[TTTITTToxl = C-[CTTTTTT0 )
LTI hox1: /B O-CTITITTL)
C-CT T LT B 1 x> O[T T T T T
O[T M1x1: = O~-CI T TT T
[ :] !Ox:l: [ ]!
O[T T L] Joxt1: O[T T T T T
Plain-FLE Outlier-FLE

Compressed Size: 5 bytes Compressed Size: 3 bytes



cuSZp2: Memory Access Optimization

m Intra-data-block, vectorizing read/write operations from global memory.

void a_CUDA_kernel (float4* array, ...) {

Ifloat4 var = array[i];
I'... // Operation for var.x,
:... // Operation for var.y,
--- // Operation for var.zi
1... // Operation for var.wl
1array[i] = var; !

void a_CUDA_kernel (float* array, ...) {
for_(int i=@; i<N; i++) {__
Mfloat var = array[i]; '
-+ // Operation for var

jarray[i] = var; I

vectorize @

/*0080*/ LD.E R2, [R6] /*0098*/ LD.E.128 R4, [R10]

N times

N/4 times
/*01a0*/ ST.E [R4], R2 [*04¢c2*/ ST.E.128 [R8], R4

Fixed-length encoding has balanced computation across each

iteration inside a loop, making it suitable to unroll and vectorize. .




cuSZp2: Memory Access Optimization

m Inter-data-block, enabling coalcesing memory access manners.

. ASetof Threadsin GPU

Original Dataset (1D Array in Global Memory)

- One Thread in Warp_n One Thread in Warp_(n+1)

One Data Block

No matter how many data blocks one thread process,

always enabling coalescing memory access!

14



cuSZp2: Synchronization Latency Control

m Motivation: High synchronization latency caused by Serial chained-scan.

T I U
AVAR VAR VAR v

This is a reduce operation (i.e. add up all compressed
block lengths) within a thread block

15



cuSZp2: Synchronization Latency Control

m Motivation: High synchronization latency caused by Serial chained-scan.

Timestep: 1

N e e e N — N e e e s N e e e s

This is a scan operation (i.e. distribute its global
location to each data block) within a thread block.

16



cuSZp2: Synchronization Latency Control

m Motivation: High synchronization latency caused by Serial chained-scan.

T D D 7
AVARRAVAREAVE I
AN - o
I R L N A

This is a scan operation (i.e. distribute its global
location to each data block) within a thread block.

-_—e - .

17



cuSZp2: Synchronization Latency Control

m Motivation: High synchronization latency caused by Serial chained-scan.

Timestep: 3

N e e e N — N e e e s N e e e s

This is a scan operation (i.e. distribute its global
location to each data block) within a thread block.

18



cuSZp2: Synchronization Latency Control

m Motivation: High synchronization latency caused by Serial chained-scan.

Timestep: 4

i

AV

o o mm mm omm -y,

\
|
I
|
|
I
|
I
|
]

N/
ﬁ

. N

Every thread block must wait until its predecessor is finished!

19



cuSZp2: Synchronization Latency Control

m In cuSZp2, we control such latency by decoupling the serial chained-scanl.

Timestep: 0

D e
—-_—a - - o o o .
om o - o o o = oy,
- - o - o s

N e e e N — N e e e s N e e e s

This is a reduce operation (i.e. add up all compressed
block lengths) within a thread block

[1] [Nvidia Tech Report’16] Single-pass Parallel Prefix Scan with Decoupled Look-back

-_—a o - - e o .

-~

20



cuSZp2: Synchronization Latency Control

m IncuSZp2, we control such latency by decoupling the serial chained-scan.

Timestep: 1

o = o = o o

L

——
——
——
-
——

- e e -

——
——
——
-
——

- e e o

——
——
——
-
——

/
|
|
|
|
1
|
|
I
\

—
—
—
—
- e = -

N e e e N — N e e e s N e e e s

This is alookback operation. When serial chained-scan not
reached, every thread block aggregates its predecessors.

-_—a o - - e o .

-~
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cuSZp2: Synchronization Latency Control

m IncuSZp2, we control such latency by decoupling the serial chained-scan.

Timestep: 2

- e o -
e

T

L
NV

N\
_‘

I
|
I
]

L
A

-

-_—e - .

This is alookback operation. When serial chained-scan not
reached, every thread block aggregates its predecessors.

22



cuSZp2: Synchronization Latency Control

m IncuSZp2, we control such latency by decoupling the serial chained-scan.

Timestep: 3

i

/
|
|
|
|
|
|
|
I
\

o o mm omm o -y,

\
|
I
|
|
I
|
I
|
]

N/
ﬁ

N

Hiding latency by making every thread block as busy as possible.

23



Evaluation: Single-Precision Datasets

m 9 real-world HPC datasets on one NVIDIA A100 GPU.

1
Imm cuSZp2-P == cuSZp2-0 i: CuZFP = FZ-GPU = cuSZp

|
Datasets | Suite | Dims per Field | # Fields | Total Size wggg ____________ 5623611 | 552.71
CESM-ATM [38] | SDRBench 3600 1800 %26 33 20.71 GB gzso
HACC [13] SDRBench 1,073,726,487 6 23.99 GB =
RTM [43] SDRBench | 1008x 1008 x352 3 3.99 GB 5210
SCALE [60] SDRBench 1200 1200 x 98 12 6.31 GB 2140
QMCPack [39] SDRBench 6969 %33120 2 1.17 GB 2 -0
NYX [61] SDRBench 512x512%x512 6 3.00 GB o 2 “ H
Jetln [62] Open-SciVis | 1408x1080x 1100 1 6.23 GB £
Miranda [63] Open-SciVis | 1024x 1024 x 1024 1 4.00 GB &= o\ P~W\ P@o R“‘J\ P‘f‘" C?"’CK W et ‘\N‘aﬂda “TNS Ne‘ag
SynTruss [64] Open-SciVis | 1200 1200 1200 1 6.42 GB CES

(c) Compression throughput with REL 1E-3 (Fixed-Rate 8 for cuZFP).

m Onaverage, ~300 GB/s and ~500 GB/s for compression and decompression.

m ~2x throughput than pure-GPU compressors, ~200x throughput than hybrid ones.
m cuSZp2-0 exhibit the highest compression ratio in almost all cases (24/27).

m Thisobservation is consistent in other lower-end GPUs, such as RTX 3080/3090. 24



Evaluation: Double-Precision Datasets

m 2 real-world HPC datasets on one NVIDIA A100 GPU.

Datasets | Suite | Dims per Field | # Fields | Total Size
S3D [67] SDRBench 11x500x 500500 5 51.22 GB
NWChem [68] SDRBench 801,098,891 1 5.96 GB
_Bm cuSZp2-P == cuSZp2-O _ == cuSZp2-P == cuSZp2-0 __mm cuSZp2-P == cuSZp2-O __ mm cuSZp2-P == cuSZp2-O
o 0 & 960 L 2 960 ‘
600 S840 700 m S840
3500 3720 2600 3720
x b =
2400 =e00 2500 2600
o ©480 o ©480
P e e e e © Eol B AE e P el et e T AEt e At ead®
e e e Ve e e e Ve PO G CU N e wev e Ve
(a) NWChem compression (b) NWChem decompression (¢) S3D compression (d) S3D decompression

m Onaverage, ~500 GB/s and ~700 GB/s for compression and decompression.

m Highest compression ratio compared with all existing GPU lossy compressors.

m Thisobservation is consistent in other lower-end GPUs, such as RTX 3080/3090.

25



More Design/Evaluation Details: Check Our Paper

m Ratio Profiling in Outlier-FLE.
m Compression ratio results.

m Memory utilization results.

m Global synchronization results.
m Data quality evaluation.

m cuSZp2-PvscuSZp2-0.

m Other optimizations.
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Abstract—Existing GPU lossy compressors suffer from ex-
pensive data movement overheads, inefficient memory access
pxlltms. and high synchronization latency, res
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L. INTRODUCTION

Modemn scientific simulations and Large Language Model
(LLM) training generate enormous volumes of data, creating a
bottleneck for High-Performance Computing (HPC) systems.
This big data issue motivates domain scientists to explore
more efficient data reduction techniques. While lossless com-

lossy compression to reduce such GPU memory footprint, any
expensive CPU computations or CPU-GPU data movement
overhead can downgrade performance drastically. Specifically,
while theoretical computation throughput for GPU can reach
thousands of GB/s [16], PCle [17], transferring data between
CPUs and GPUs, has only a limited throughput of around
10~20 GB/s. CPU-GPU hybrid designs can result in much
longer training periods, thus leading to huge financial losses.
These practical scenarios drive researchers to explore ultra-fast
GPU lossy compression techniques.
B. Limitations of Existing Works and Goal

However, existing GPU lossy compressors suffer from
limited throughput, with the underlying reasons detailed in
Table L. For cuSZ [18], cuSZx [19], and MGARD-GPU [20],
although the core compression algorithm executes within

3PU, they require expensive CPU computations to perform
global synchronization, build Huffman tree, or conduct GPU
kemel communications. In the meanwhile, cuZFP [21], FZ-
GPU [22), and cuSZp (23] have pure-GPU designs. but they
cither underutilize memory bandwidth or are bounded by

pressors are limited by their modest ratios (1]
(around 2:1), error-bounded lossy compression [2}-{4] offers
significantly higher compression ratios by introducing user-
controllable errors, thus turns out to be a promising solution in
HPC simulations, such as cosmology simulation [5], quantum
circuit simulation [6], and seismic imaging (7], [8].

A. Motivation for Ultra-Fast GPU Lossy Compression

Recently, there have been increasingly more HPC scenarios
requiring GPU compression and rapid ing speeds [9]-
[14). One example is Reducing Data Stream Intensity [10).
In the Linear Coherent Light Source (LCLS) [11], a leading
free-electron laser facility at the Stanford Linear Accelerator
Center, the raw acquisition rate of high-brilliance X-ray beams
reaches approximately 250 GB/s. This rate demands a com-
pression throughput that exceeds the capabilities of CPU-based
compressors, underscoring the need for high-speed GPU solu-
tions. Another case is Benefiting LLM Training. LLaMA [15],
for example, takes 2,048 NVIDIA A100 GPUs to store its
parameters and 21 days to complete model training [9]. To use

*Cortesponding author: Sheng Di. Mathematics and Computer Scienc
Division, Argonne National Laboratory, Lemont, IL, USA
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latency, which critically impacts GPU kemel throughput [24].
T Fure GPU | Singe Wigh MB | Lateney
Lowy Compresor | Deign? | Kernet? | Ulzaton? | Contrat?
sz ¥ x x =
MGARD-GRU x X H
oy x 7 %

S ;i y H =
VLR Y X H ¥
sty J J x H
uShe? our work) | ¢ ’ %
TABLE I: Key designs related to throughput in existing GPU

lossy compressors. “MB” denotes memory bandwidth,

Ideally, a promising GPU lossy compressor should satisfy:

o Pure-GPU design/implementation without any CPU com-
putations and data movement overheads

« Extreme throughput with high memory bandwidth utiliza-
tion and high-speed latency control

« High compression ratio and user-satisfied data quality —

ntrinsic requirements for designing a lossy compressor.

C. Our Solution: CUSZP2

In this work, we propose CUSZP2, an error-bounded lossy
compressor purely exccuted in one GPU kemnel, achieving
extreme throughput, optimized compression ratios, and high
reconstructed data quality. CUSZP2 compresses data at block

26



To Use cuSZp API: C/C++

#include <cuSZp.h> // the only header needed

// For measuring the end-to-end throughput.
TimingGPU timer_GPU;

cuszp_type_t dataType = CUSZP_TYPE_FLOAT; // or CUSZP_TYPE_DOUBLE
cuszp_mode_t encodingMode = CUSZP_MODE_PLAIN; // or CUSZP_MODE_OUTLIER

// cuSZp compression.

timer_GPU.StartCounter(); // set timer

cuSZp_compress(d_oriData, d_cmpBytes, nbEle, &cmpSize, errorBound, dataType, encodingMode, stream);
float cmpTime = timer_GPU.GetCounter();

// cuSZp decompression.

timer_GPU.StartCounter(); // set timer

cuSZp_decompress(d_decData, d_cmpBytes, nbEle, cmpSize, errorBound, dataType, encodingMode, stream);
float decTime = timer_GPU.GetCounter();

m Aunified API for float/double GPU array with different encoding modes.

m More specified APIs and some intrinsic features are also provided.

27



To Use cuSZp API: Python

from pycuSZp import cuSZp

compressor = cuSZp()
# cuSZp compression.

start_time = time.time() # set cuSZp timer start

compressed_size = compressor.compress(
ctypes.c_void_p(data.data_ptr()), # Input data pointer on GPU
ctypes.c_void_p(int(d_cmpBytes)), # Output buffer on GPU
data.numel(), # Number of elements
1E-2, # Set 1E-2 as error bound.
data_type=0, # float 32, 1 for float64 (i.e. double)
mode=0 # Plain mode, 1 for outlier mode

)

compression_time = time.time() - start_time # set cuSZp timer end

m Slight performance degradation but still very fast in Python end-to-end usages.

m Both Numpy Array and Torch Tensor examples are provided in cuSZp repo.



Summary

cuSZp2is open source at https://github.com/szcompressor/cuSZp

~300 GB/s and ~500 GB/s cmp/dec throughput for single-precision datasets.
~500 GB/s and ~700 GB/s cmp/dec throughput for double-precision datasets.
Two lossless encoding modes supported, high compression ratio for different data.
Efficient implementation on both high-end and low-end NVIDIA GPUs.

Easy-to-use C/C++ and Python APIs are provided.

Yafan Huang

University of lowa
yafan-huang@uiowa.edu
https://hyfshishen.github.io

Argonne &

NATIONAL LABORATORY
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Backup: Ratio Profiling in Outlier-FLE

m In Outlier-FLE: the outlier processing is only adopted when it has benefit over

plain-FLE. This is achieved by a ratio profiling phase.

'

Compression
Ratio Profiling

Plain FLE Outlier FLE - ~ - ~
is better is better - . j
\ J\L \ J \_ )

Plain Outlier Mode Outlier Fixed- Wasted Fixed-
FLE FLE Flag Length  Length Bits! Length
cuSZp-0 lossless encoding mode explanation Offset in Outlier-FLE mode. Offset in Plain-FLE mode.

Only storing outlier when it has benefits

In another word, in an HPC field, if ratio profiling always telling

“Plain-FLE is better” Outlier-FLE will be downgraded into Plain-FLE. 20




