
cuSZp2: A GPU Lossy Compressor with Extreme

Throughput and Optimized Compression Ratio

Yafan Huang, Sheng Di*, Guanpeng Li, Franck Cappello

■ Modern HPC systems generate massive data volumes at rapid speeds.

Big Data Issue in Modern HPC Systems

[1] [Reverse Time Migration Technology] https://www.seismiccity.com/RTM.html
[2] [LCLS-II @ SLAC] https://lcls.slac.stanford.edu/lcls-ii
[3] [LLaMA @ Meta] https://llama-2.ai/llama-2-model-details/

2,048 x A100 GPUs
1.3 T Tokens & 65 B Parameters

■ High memory footprint: Seismic imaging methods.

■ Intensive data streams: X-ray source applications.

■ Expensive data movement overheads: Large Language Model (LLM) training.

LLaMA LLM, 2023[3]LCLS-II, 2024[2]

250 GB/s ~ 1TB/s
Data Generation Speed

Reverse Time Migration[1]

2.8 PB Simulation Data
10x10x8 km3 per Snapshot

2

https://www.seismiccity.com/RTM.html
https://lcls.slac.stanford.edu/lcls-ii
https://llama-2.ai/llama-2-model-details/

Only Preserving
Compressed Data

in Runtime

■ Directly compress/decompress data where it is generated/processed.

In-situ Data Compression

Prev. HPC Simulation
or LLM Training

C
M
P

D
E
C

Succ. HPC Simulation
or LLM Training

■ Two key requirements for in-situ data compression tasks.

■ CMP and DEC here refers to “compression” and “decompression”.

■ Throughput: compression and decompression speed, the faster the better.

■ Compression ratio: ori. data size/cmp. data size, the higher the better.

We need a fast and high-ratio compressor, but how?
3

✔✔

■ GPU Lossy Compression excels in in-situ compression tasks due to:

GPU Lossy Compression

■ GPU: Entensive parallelism makes high throughput possible.

■ Lossy Compression: Offers much higher compression ratio than lossless ones.

CPU GPU

Encoding phase of SZx[1]

~10 GB/s CPU vs ~200 GB/s GPU

[1] [HPDC’22] Ultrafast Error-bounded Lossy Compression for Scientific Datasets

Ori. Data Lossless Cmp. Lossy Cmp.

Make such “lossy” acceptable to
HPC by error-bounded.

4

■ GPU parallelism drastically complicates the compression algorithm designs.

■ Taking Huffman Encoding as an example. Given string array AAABBCD.

Challenge 1: Parallel Architecture Constraints

A 3

B 2

C 1

D 1

Root

A BCD

B CD

C D

A 0

B 10

C 110

D 111

AAABBCD

000101011011111

Step1:
Generating

Frequency Table

Step2:
Constructing
Huffman Tree

Step3:
Building Huffman

Codebook

Step4:
Compression

One table/tree/codebook for entire array,
requiring frequent global synchronization.

Easy to parallel,
but read/write
conflict exists. 5

■ Unlike CPU, GPU is highly sensitive to memory access behaviors.

■ Taking a simple 2D-Lorenzo Prediction as an example.

Challenge 2: Complex Memory Access Patterns

Strided memory access, drastically reducing throughput.

i-1, j-1 i, j-1

i-1, j i, j

Use 3 spatially adjacent data
points to predict current one.

…

Computer system stores all arrays in 1D manner.
Not adjacent anymore!

6

Challenge 3: Latency in Resolving Linear Recurrence

L0 + L1L0 L0 + L1 + L2

Ori. Array

Thread 0 Thread 1 Thread 2 Thread 3

Each
Compressed

Block

Based on
those indexes.

L0 L1 L2 L3

Step1:
Parallel Cmp.

Step2:
Generating Index

0

Step3:
Block Concat.

Starting Index of
Each Compresed

Block

Output: A Single, Unified Compressed Array

Linear Recurrence!
Yn = Yn-1+Xn

(Divided into
Blocks)

7

Limitations of Existing Solutions

cuSZ, cuSZx,
MGARD-GPU, etc.

Fail to address Challenge 1, using
CPU-GPU hybrid design instead.

cuZFP, FZ-GPU,
cuSZp, etc.

Fail to address Challenge 2, leading to
inefficient memory access patterns.

FZ-GPU, cuSZp, etc.
Fail to address Challenge 3, resulting in

high latency in block concatenation.

Wishlist
Pure-GPU

Design

Efficient
Memory
Access

Low
Sync.

Latency

Error
Control

High CMP
Ratio

Guaranteeing High Throughput 8

Our Solution: cuSZp2

cuSZp2Original
Data Array

Compressed
Data Array

Input Output

■ Compression/decompression requires only one GPU kernel function.

■ Highly efficient latency control and memory access patterns – extreme throughput.

■ Two encoding modes, high compression ratio for different data patterns.

■ Error-bounded lossy compression, ensuring high reconstructed data quality.

Key Features of cuSZp2

An Error-bounded GPU Lossy Compressor

9

cuSZp2: Algorithm and Running Example

■ cuSZp operates at block granularity and requires four steps to perform compression.

Lossy
Conversion

Lossless
Encoding

Global
Prefix-sum

Block
Concat.

1 2 3 4

1.12 1.31 2.46 1.14 3.15 3.13 2.17 1.41

6 7 12 6 16 16 11 7
1

2

2 Index in final
compressed array

A weather simulation HPC field
(blockSize = 8)

3

4

A running example to show how cuSZp2 compresses an HPC dataset. 10

cuSZp2: Lossless Encoding Method

■ Motivation: a natural defect in processing HPC fields by parallel compressors.

A
ft

er
 L

o
ss

y
C

o
nv

er
si

o
n

High-Smoothness of HPC Dataset

8 9 9 9 8 9 9 9

Quantization Integers
of Selected Data Block

Quantization Integers
After First-Order Diff.

ABS. Quantization Integers
After First-Order Diff. ABS. Integers in Bits

8

1

0

0

1

1

0

0

8 1 0 0 -1 1 0 0

8 1 0 0 1 1 0 0

In blockwise parallel compressors, while processing smooth HPC fields,
the first integer is usually much greater than the rest, making it an outlier. 11

cuSZp2: Lossless Encoding Method

■ Fixed-length encoding (FLE) preserves the same number of bits for each integer.

8 x 1

1 x 1

0 x 1

0 x 1

1 x-1

1 x 1

0 x 1

0 x 1

8 x 1

1 x 1

0 x 1

0 x 1

1 x-1

1 x 1

0 x 1

0 x 1

Plain-FLE Outlier-FLE
Compressed Size: 5 bytes Compressed Size: 3 bytes

■ In cuSZp2, both modes (Plain-FLE and Outlier-FLE) are preserved.

12

cuSZp2: Memory Access Optimization

■ Intra-data-block, vectorizing read/write operations from global memory.

void a_CUDA_kernel (float* array, ...) {
 for (int i=0; i<N; i++) {
 float var = array[i];
 ... // Operation for var
 array[i] = var;
 }
}

void a_CUDA_kernel (float4* array, ...) {
 for (int i=0; i<N/4; i++) {
 float4 var = array[i];
 ... // Operation for var.x
 ... // Operation for var.y
 ... // Operation for var.z
 ... // Operation for var.w
 array[i] = var;
 }
}

/*0080*/ LD.E R2, [R6]
… …
/*01a0*/ ST.E [R4], R2

/*0098*/ LD.E.128 R4, [R10]
… …
/*04c2*/ ST.E.128 [R8], R4

Fixed-length encoding has balanced computation across each
iteration inside a loop, making it suitable to unroll and vectorize.

N times N/4 times

ve
ct
or
iz
e

13

cuSZp2: Memory Access Optimization

■ Inter-data-block, enabling coalcesing memory access manners.

... ...

...

Original Dataset (1D Array in Global Memory)

...

...

One Thread in Warp_n One Thread in Warp_(n+1) One Data Block

No matter how many data blocks one thread process,
always enabling coalescing memory access!

A Set of Threads in GPU

14

cuSZp2: Synchronization Latency Control

■ Motivation: High synchronization latency caused by Serial chained-scan.

This is a reduce operation (i.e. add up all compressed
block lengths) within a thread block

Timestep: 0

15

cuSZp2: Synchronization Latency Control

■ Motivation: High synchronization latency caused by Serial chained-scan.

This is a scan operation (i.e. distribute its global
location to each data block) within a thread block.

Timestep: 1

16

cuSZp2: Synchronization Latency Control

■ Motivation: High synchronization latency caused by Serial chained-scan.

This is a scan operation (i.e. distribute its global
location to each data block) within a thread block.

Timestep: 2

17

cuSZp2: Synchronization Latency Control

■ Motivation: High synchronization latency caused by Serial chained-scan.

This is a scan operation (i.e. distribute its global
location to each data block) within a thread block.

Timestep: 3

18

cuSZp2: Synchronization Latency Control

■ Motivation: High synchronization latency caused by Serial chained-scan.

Timestep: 4

Every thread block must wait until its predecessor is finished!
19

cuSZp2: Synchronization Latency Control

■ In cuSZp2, we control such latency by decoupling the serial chained-scan[1].

This is a reduce operation (i.e. add up all compressed
block lengths) within a thread block

Timestep: 0

[1] [Nvidia Tech Report’16] Single-pass Parallel Prefix Scan with Decoupled Look-back
20

cuSZp2: Synchronization Latency Control

■ In cuSZp2, we control such latency by decoupling the serial chained-scan.

Timestep: 1

This is a lookback operation. When serial chained-scan not
reached, every thread block aggregates its predecessors.

21

cuSZp2: Synchronization Latency Control

Timestep: 2

■ In cuSZp2, we control such latency by decoupling the serial chained-scan.

This is a lookback operation. When serial chained-scan not
reached, every thread block aggregates its predecessors.

22

cuSZp2: Synchronization Latency Control

Timestep: 3

■ In cuSZp2, we control such latency by decoupling the serial chained-scan.

Hiding latency by making every thread block as busy as possible.
23

Skip!

Evaluation: Single-Precision Datasets

■ 9 real-world HPC datasets on one NVIDIA A100 GPU.

■ On average, ~300 GB/s and ~500 GB/s for compression and decompression.

■ ~2x throughput than pure-GPU compressors, ~200x throughput than hybrid ones.

■ cuSZp2-O exhibit the highest compression ratio in almost all cases (24/27).

■ This observation is consistent in other lower-end GPUs, such as RTX 3080/3090. 24

Evaluation: Double-Precision Datasets

■ 2 real-world HPC datasets on one NVIDIA A100 GPU.

■ On average, ~500 GB/s and ~700 GB/s for compression and decompression.

■ Highest compression ratio compared with all existing GPU lossy compressors.

■ This observation is consistent in other lower-end GPUs, such as RTX 3080/3090. 25

More Design/Evaluation Details: Check Our Paper

■ Ratio Profiling in Outlier-FLE.

■ Memory utilization results.

■ Global synchronization results.

■ Data quality evaluation.

■ cuSZp2-P vs cuSZp2-O.

■ Other optimizations.

■ Compression ratio results.

26

To Use cuSZp API: C/C++

27

#include <cuSZp.h> // the only header needed

// For measuring the end-to-end throughput.
TimingGPU timer_GPU;

cuszp_type_t dataType = CUSZP_TYPE_FLOAT; // or CUSZP_TYPE_DOUBLE
cuszp_mode_t encodingMode = CUSZP_MODE_PLAIN; // or CUSZP_MODE_OUTLIER

// cuSZp compression.
timer_GPU.StartCounter(); // set timer
cuSZp_compress(d_oriData, d_cmpBytes, nbEle, &cmpSize, errorBound, dataType, encodingMode, stream);
float cmpTime = timer_GPU.GetCounter();

// cuSZp decompression.
timer_GPU.StartCounter(); // set timer
cuSZp_decompress(d_decData, d_cmpBytes, nbEle, cmpSize, errorBound, dataType, encodingMode, stream);
float decTime = timer_GPU.GetCounter();

■ A unified API for float/double GPU array with different encoding modes.

■ More specified APIs and some intrinsic features are also provided.

To Use cuSZp API: Python

■ Both Numpy Array and Torch Tensor examples are provided in cuSZp repo.

■ Slight performance degradation but still very fast in Python end-to-end usages.

28

from pycuSZp import cuSZp

compressor = cuSZp()
cuSZp compression.
start_time = time.time() # set cuSZp timer start
compressed_size = compressor.compress(
 ctypes.c_void_p(data.data_ptr()), # Input data pointer on GPU
 ctypes.c_void_p(int(d_cmpBytes)), # Output buffer on GPU
 data.numel(), # Number of elements
 1E-2, # Set 1E-2 as error bound.
 data_type=0, # float 32, 1 for float64 (i.e. double)
 mode=0 # Plain mode, 1 for outlier mode
)
compression_time = time.time() - start_time # set cuSZp timer end

Summary
■ cuSZp2 is open source at https://github.com/szcompressor/cuSZp

Yafan Huang
University of Iowa

yafan-huang@uiowa.edu

https://hyfshishen.github.io

■ ~300 GB/s and ~500 GB/s cmp/dec throughput for single-precision datasets.

■ ~500 GB/s and ~700 GB/s cmp/dec throughput for double-precision datasets.

■ Two lossless encoding modes supported, high compression ratio for different data.

■ Efficient implementation on both high-end and low-end NVIDIA GPUs.

■ Easy-to-use C/C++ and Python APIs are provided.

29

https://github.com/szcompressor/cuSZp
https://hyfshishen.github.io/

Backup: Ratio Profiling in Outlier-FLE

■ In Outlier-FLE: the outlier processing is only adopted when it has benefit over

plain-FLE. This is achieved by a ratio profiling phase.

Plain
FLE

Outlier
FLE

Compression
Ratio ProfilingPlain FLE

 is better
Outlier FLE

 is better

cuSZp-O lossless encoding mode explanation
Only storing outlier when it has benefits

Wasted
Bits!

Mode
Flag

Outlier
Length

Fixed-
Length

Fixed-
Length

Offset in Outlier-FLE mode. Offset in Plain-FLE mode.

In another word, in an HPC field, if ratio profiling always telling
“Plain-FLE is better”, Outlier-FLE will be downgraded into Plain-FLE. 30

