
Dynamic Entity-Based Named Entity Recognition
Under Unconstrained Tagging Schemes
Feng Zhao , Xiangyu Gui, Yafan Huang, Hai Jin , Fellow, IEEE, and Laurence T. Yang

Abstract—As increasinglymore textual information becomes available, named entity recognition (NER) systems are thriving, benefiting

from powerful models and expressive tagging schemes that promote the full use of diverse features at different levels. To improve

performance, traditional approaches have focusedmainly on changing the structures of NERmodels but have always ignored the hard

constraints and left the NER tagging schemes unchanged. To solve this problem, this article proposes a dynamic entity-based NER

approach under unconstrained tagging schemes. To eliminate the constraints, we reorganize widely used tagging schemes and propose

two novel unconstrained schemes: one in which tags are assigned to words and entities separately, and onewhere words and entities are

labeled indiscriminately by uniformly taking them as chunks. Associated with the unconstrained tagging schemes, two entity-based

neural architectures are also presented that recognize entities at the same time that the sentence is dynamically segmented. Unlike other

static NERmodels that process all the tags after labeling each word, our models address the inputs dynamically by the interactions

between the input text and the output labels. The dynamic mechanism can ensure that the entity-level features are included in the NER

system, which is helpful for correctly recognizing entities. Except for word embeddings pretrained from unlabeled corpora, no external

language-specific knowledge or other resources such as gazetteers are used. The experimentswith English, German, Dutch, and

Spanish datasets show that our methods can perform very well with different languages. Particularly, the results of the recall rate against

the entity’s length reveal that the proposed entity-basedmodels are suitable for recognizing entities with long lengths.

Index Terms—Neural network, named entity recognition, entity-based model, unconstrained tagging schemes

Ç

1 INTRODUCTION

NAMED entity recognition (NER) is an important topic in
the natural language processing (NLP) field. It is funda-

mental to many artificial intelligence tasks, such as informa-
tion extraction, machine translation, automatic question
answering, and knowledge graphs. NER aims to extract enti-
ties from a sequence of raw text and classify them into specific
categories, including Person, Location and Organization. In
addition to these three categories, in the NER datasets
CoNLL2002 [1] and CoNLL2003 [2], a Miscellaneous category
is also defined for the entities that belong to other categories.
NER is generally treated as a sequence-labeling task, giving
each word a single tag to indicate whether it is a part of an
entity in a unique category. In the existing research, probabi-
listic graphical models (PGMs) and other statistical learning
methods are widely used to predict these tags, such as the
hidden Markov model (HMM) [3], support vector machine
(SVM) [4], and conditional random field (CRF) [5]. In these

methods, handcrafted linguistic features anddomain-specific
knowledge (e.g., gazetteers) are widely used to jointly make
decisions, and feature engineering is a primary approach to
enhance the capability of the model. Unfortunately, high-
quality handcrafted features are complicated to define and
are difficult to generalize to other languages or domains,
which makes adapting PGMs to different NER tasks a chal-
lenge. Thus, there is a need for an efficient approach that is
able to dynamically and accurately performNER.

In recent years, neural networks (NNs) have been adopted
inNER. Collobert [6] proposed a fully connectedNN solution
and achieved excellent performance in most NLP tasks.
Rather than precisely defining handcrafted features, more
attention has been focused on constructing intricate struc-
tures of NNs, such as the bidirectional long short-termmem-
ory (LSTM)-CRF model [7], [8] and the bidirectional LSTM-
convolutional neural network (CNN) model [9]. The main-
stream approach in most existing NER models is to exploit
the features in each single word. At theword level, words are
embedded into a fixed-dimension feature space by word
embedding methods [10], [11], [12]. Rather than initializing
the words randomly in NER models, the embedding vectors
are fed into themodels to represent the hidden features in the
words. Word embedding is almost a standard method for
most NLP tasks. At the character level, features are repre-
sented by feeding the character sequence of a word into an
LSTM network [8] or a CNN [9]. However, entity-level fea-
tures, providing precise information, are seldom taken into
account in these models, which influences accuracy. To con-
struct an entity-based model, two technical problems should
be solved: one is to explore and discover names of entities
from the raw text. For example, given a sentence without any
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annotations, the model must resolve the names from the
words out of entities. The other is to find a properway to rep-
resent these names; since these names are of different lengths,
it is challenging to represent them in a uniform style.

In addition to entity information, another challenging
problem in the NER task is the hard constraint hidden in
the tagging scheme. Current labeling schemes make the fea-
tures overlap, which leads to NER models being complex to
learn. In the inside-out-begin (IOB) and inside-out-begin-
end-single (IOBES) formats for NER [13], words are labeled
in a “position-category” hybrid annotation style, from
which NER systems suffer in at least three aspects: First, fea-
tures for segmentation and classification are overlapped
and arduous for learning in this style. Second, hard con-
straints are inevitable during the prediction process, which
brings about inexplicable NER results. Finally, under these
word-level tagging schemes, tags are designed only for
words, and it is very difficult to utilize entity-level informa-
tion in NER models. CRF [6] and SemiCRF [14] are effective
models for solving these problems to some extent, but they
never optimize the tagging schemes. To address this issue,
we propose two unconstrained tagging schemes with differ-
ent styles that separate positional annotations from categori-
cal annotations. In particular, in a dynamic labeling style,
tags are not designed restrictively for words but also for
chunks and entities. This tagging strategy is very effective,
and almost no hard constraints are found in the predicted
tags when cooperating with ripple LSTM, which is verified
in our experiments.

In this paper, we propose a dynamic entity-based NER
approach under unconstrained tagging schemes. Two
entity-based models, the entity-centric model (ECM) and
the ripple-LSTM model (R-LSTM), are proposed. In ECM,
NER is completed in two phases: the NE extraction phase
and NE classification phase. Entities are extracted by seg-
menting a sentence into chunks of entities and then repre-
sented by an entity-character embedding method, which
will map the entities of any length into the same semantic
vector space of words. These embeddings, which contain
hidden features in entities, will be explicitly exploited in the
classification phase. The two phases are integrated into a
single phase using the R-LSTM model. This strategy takes
advantage of a sliding window to detect entities in the sen-
tence. The content in the window, which may be a word, an
uncompleted entity chunk or an entity, will be represented
in a uniform way by an LSTM network. Although strong
features for entities can be obtained by the gazetteer
extracted from an external knowledge base [15], our meth-
ods are purely neural-based without any specific resources.
Specifically, both models are based on an LSTM network.
They are segment-level models in which sentence segmen-
tation is an essential part. More importantly, in our models,
entities are recognized as a whole, and entity-level features
are adopted during the decision-making process. Our main
contributions are as follows:

� A dynamic entity-based method is proposed to
extract and classify NEs separately. To further
exploit word-level and character-level information
in NER, this paper focuses on the hidden features in
the entity and represents them in a uniform way,

irrespective of the length of the entity. Entity-level
information is fully used in the classification stage to
promote classification accuracy. Specifically, the
entity-character representation method can map
entities into the same semantic space of words.
Although its simple structure is easy to build and
train, its performance is greatly improved compared
with those of up-to-date complicated NER models.

� Two unconstrained tagging schemes are proposed,
and their properties are quantitatively analyzed and
compared with those of existing schemes. Our tag-
ging schemes break through the limitation that the
tagging target is restricted to a word. Rather, we gen-
eralize the target to an entity or even a chunk with
arbitrary words. Comparedwith traditional schemes,
the proposed dynamically styled tagging scheme is
simple, unconstrained and expressive.

� Two segment-level NER models are constructed, and
their performances are tested on four different lan-
guages. No external handcrafted features or knowl-
edge bases are used in our models. Together with
the unconstrained tagging schemes, no CRF layer is
needed for their neural architectures. In particular,
in the R-LSTM that we build, a sliding Bi-LSTM
structure is innovatively used to simultaneously seg-
ment the sentence and recognize entities. The F1
scores are comparable with those of state-of-the-art
methods on the four tested languages.

The remainder of this paper is organized as follows.
Work related to this paper is discussed in Section 2. In
Section 3, we provide an overview of the unconstrained tag-
ging schemes for dynamic NER. In Section 4, the dynamic
NER models are discussed. The experiments and results are
presented in Section 5. In Section 6, we conclude our paper
with directions for future work.

2 RELATED WORK

NER is a traditional problem with flexible methods. In
terms of NER models, feature engineering and knowledge
representation, NER systems have remarkably varied over
time. We summarize the existing NER works as word-level
and segment-level works according to the source of NER
features. Our entity-based models belong to the segment
level but refer to the representation methods used in the
word level.

2.1 NER at Word Level

The features for word-level NER models come from words.
In early research, statistical learning methods were widely
used. In CoNLL2002, Carreras et al. [16] achieved the best
score on Dutch and Spanish using a combination of several
small decision trees. Many other models, such as HMM,
SVM and CRF, were also introduced by [3], [5], [17] and
obtained acceptable results. The features used in their mod-
els were customized for a specific language, which will
encounter problems when generalizing to other languages
or domains. To overcome the problem of generalization,
Agerri and Rigau [18] presented a multilingual NER
approach based on a set of cross-language features and
obtained superb performance on five different languages.
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However, designing proper handcrafted features for these
models is difficult and requires a considerable amount of
linguistic knowledge.

NNs have taken over many arduous tasks in NER feature
engineering. Neural models have shown great potential in
NLP since Collober et al. [6] refreshed several records in the
field, including NER tasks in which a CNN combined with a
CRF layer was used. Inspired by this work, Huang et al. [7]
constructed a bidirectional LSTM-CRF network for
sequence-labeling tasks. Chiu and Nichols [9] proposed an
LSTM-CNN model and achieved state-of-the-art results in
English. In these works, some handcrafted features were still
used to augment theirmodels.Words are represented by dis-
tributed embeddings that are trained from a large amount of
unlabeled corpora using specific models, such as Word2Vec
[10] and GloVe [12]. The semantic information hidden in
each word can be represented by a fixed-dimension vector.
In addition to word embedding, many character embedding
methods have been explored in NER tasks. Lample et al. [8]
utilized a bidirectional LSTM (Bi-LSTM) network to obtain
character-level representations. Furthermore, Yadav et al.
[19] introduced an affix embedding method and obtained
state-of-the-art results on three different languages.

In the models that we propose, the word-char embedding
method is used to extract orthographic features and lan-
guage-specific features using the LSTM network as in [8]. In
addition, we extend the method to the region of representing
entity chunks. Though language modeling methods such as
BERT [20] were popular recently, they are beyond the scope
of this paper, which focuses on the main architectures for
NER.

2.2 NER at Segment Level

In segment-level models, sentences are segmented coincid-
ing with the recognition of entities. Features from segments
(generally entities) can be fully utilized. Two-phase meth-
ods that separated NER into an extraction phase and a clas-
sification phase were proposed in the biomedical NER field
[21], [22]. Our ECM model adopts the two-phase architec-
ture and relies on an NN in each phase.

Compared with two-phase models, the SemiCRF [23]
model was a more concise model, in which labels were
assigned to segments rather than to individual elements.
Rather than modeling the constraints hidden in the tags for
words in the traditional linear-chain CRF model, SemiCRF
concentrated on the transition features in tags for segments.
Similar to the CRF model, SemiCRF can be combined with
NNs in sequence-labeling tasks. Zhuo et al. combined
SemiCRF with a gated recursive CNN (grConvs) [24] and
applied it in sequence-labeling tasks. Sato et al. [25]
improved the model and achieved the best NER score in
English. However, the encoding and decoding processes
were still intricate in the model, especially when pruning
the candidate segment lattice for the networks.

Our models are segment-level models and utilize entity-
level information in NER. Under unconstrained tagging
schemes, entities are labeled as a whole in a dynamic way
without any help from the CRF. The function of R-LSTM is
similar to the transition-based model Stack-LSTM [8], but
their structures are completely different. In Stack-LSTM, four
storage and computation-consuming LSTM sequences are

employed, which makes it difficult to train the network well.
Our R-LSTM resorts to only two LSTM sequences by a sliding
window strategy.Moreover, our R-LSTMNER results greatly
surpass those of Stack-LSTM in four languages.

3 UNCONSTRAINED TAGGING SCHEMES FOR

DYNAMIC NER

In this section, we analyze the shortage in traditional label-
ing formats from the perspective of hard constraints and
improve them based on the analysis.

3.1 Motivation

With the development of NER, the tagging scheme becomes
increasingly important. There is a natural bias, a hard con-
straint, in tagging schemes, and we define it as follows:

Definition 1 (Hard constraint). Hard constraint refers to the
two-gram labeling that does not conform to the grammar of the
tagging scheme.

In the NER task, IOB and IOBES are two widely used
schemes since the IOB format has been developed by [26]
for the text chunking task. Regardless of which format is
used, the performance of the NER system suffers from hard
constraints in the following aspects.

� Entities are difficult to extract as their length increases.In
traditional tagging schemes, each word acts as a
voter for the entity. Strictly speaking, an entity is not
recognized until the vote result is consistent and con-
forms to the schemes’ grammatical rules. As the
length grows, there are more chances to trigger the
hard constraints between the adjacent words.

� The rules are hard to learn as more information will be
conveyed by the tags.The labeling system becomes
more complicated when the tags are set to represent
a variety of positions and categories. As the analysis
progresses, styles of hard constraints will increase
quadratically with the number of entity categories.
In this situation, complicated rules between the
sequential tags will make the entity unrecognized
and threaten the whole system’s performance.

A comparison of various tagging schemes is shown in
Table 1, in which the IOB and IOBES formats in their origi-
nal style are presented. Assume that there are four kinds of
entities to be resolved, they are PER (person), LOC (loca-
tion), ORG (organization) and MISC (miscellaneous). For
the IOB-original format, 9 tags are needed including B-c, I-c
(c indicates the four listed categories), and O. In the IOBES-
original format, 17 tags are utilized. The hard constraints are
easy to find in these schemes. A count reveals that there are
28 types of hard constraints in the IOB-original format and
even 209 in the IOBES-original format, though the total two-
tag permutation in the IOBES-original format is 289 (172).

3.2 Improvements

These hard constraints mainly come from a hybrid location-
category annotation style such as B-c and I-c. Based on the
analysis, two unconstrained tagging schemes in a divided
and dynamic style are proposed.
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The IOB/IOBES-divided Format is a variant of the IOB/
IOBES-original format, by separating the positional informa-
tion from the categorical information. In the IOB/IOBES-
divided format, the original tags are divided into two sets:
one set for the NE positional information ({B, I, O} or {B, I,
O, E, S}) and the other set for the NE categorical information
({PER, LOC, ORG, MISC}), as shown in Table 1. The categor-
ical labels are no longer assigned to a single word but rather
to the whole entity. The entity’s category will be judged
only once by labeling the entity as a whole, disregarding its
length. It is notable that only one hard constraint (I after O)
is found in the IOB-divided format and 14 in the IOBES-
divided format.

The WEL-dynamic Format is a whole-entity-labeling for-
mat that is dynamic. In this format, three actions (Fusion,
Out and Catch-c) are used to represent the operations on the
labeling object. Fusion means that the object is an uncom-
pleted part of an entity and should be fused with the next
word. Catch is used for the objects that are judged to be an
entire entity, and we will classify it into a specific category
with a suffix c. Out is used when a common word outside of
an entity is presented. For example, with a three-word
entity ½e1; e2; e3�, the first word e1 will be labeled by Fusion,
and then together with e2, Fusion will be assigned to the
chunk ½e1; e2�, and finally, the entity ½e1; e2; e3� will be caught
in category c by Catch-c. In the WEL-dynamic format, only 6
tags are needed. Out of a total of 36 two-tag permutations,
the only constraint is Out after Fusion. In fact, this permuta-
tion is also explainable to some extent as the NER model
finds the chunk that is not likely to be an entity after fusing
its words.

4 DYNAMIC NER MODELS

As shown in Fig. 1, we propose two dynamic models, ECM
and R-LSTM, to process the input under the IOB/IOBES-
divided format and the WEL-dynamic format, respectively.
The basic Bi-LSTMmodel, which is widely used in many tag
prediction tasks, is the common foundation of our dynamic
models and will be introduced as the premise of tag predic-
tion in Section 4.1. The details of ECM and R-LSTM are pre-
sented in Sections 4.2 and 4.3. Together with the word-char
embedding, the entity representation strategy is summa-
rized in Section 4.4.

4.1 Basic Premise of Tag Prediction

The main architectures of most tag prediction models are
based on LSTMunits [27] which are implemented as follows:

ft ¼ sðWfxt þUfht�1 þ bfÞ
it ¼ sðWixt þUiht�1 þ biÞ
ot ¼ sðWoxt þUoht�1 þ boÞ
ct ¼ ft � ct�1 þ it � tanhðWcxt þUcht�1 þ bcÞ
ht ¼ ot � tanhðctÞ;

(1)

where s is the elementwise sigmoid function and � is the
elementwise product. The gates f; i and o represent the for-
get gate, input gate and output gate, respectively. W, U and
b are the parameters tuned during the training process.
Given a sentence containing nwords

W ¼ ðw1; w2; . . . ; wnÞ; (2)

each word is properly represented by its a fixed-dimension
embedding xw

i . After being fed into a Bi-LSTM, the hidden
states for each word can be obtained from

h
!
; h
 ¼ BiLSTMð½xw1 ; xw2 ; . . . ; xwn �Þ: (3)

The ith word together with its contexts are represented by
the concatenation of the ith index of the hidden states

hi ¼ ½hi
!
; hi
 �: (4)

Then, hi is projected by an output layer to obtain the score
for each tag

Si ¼Whi þ b; (5)

in which W is the projection matrix and b is the bias. We
consider SiðyÞ to be the score of tag y; then, we can obtain
its probability using a softmax function

TABLE 1
Comparison of Different Tagging Schemes

Note that B-c indicates the four specific tags of B-PER, B-LOC, B-ORG and B-MISC. I-c, E-c, S-c and Catch-c are used the same way.

Fig. 1. Dynamic NER models under unconstrained tagging schemes.
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PiðyÞ ¼ esiðyÞP
ŷ2Y esiðŷÞ

: (6)

We will maximize the log-probability of each accurate tag
during training

log ðPiðyÞÞ ¼ SiðyÞ � log
X
ŷ2Y

esiðŷÞ
 !

; (7)

where Y denotes the set of tags. During decoding, we will
choose the most probable tag y� as

y� ¼ argmax
ŷ2Y

PiðŷÞ: (8)

For the NER task under the IOB/IOBES-original format, this
basic Bi-LSTM model is convenient for predicting the tags
for each word, and it is the fundamental structure for our
dynamic models.

4.2 Entity-Centric Model

For NER under the IOB/IOBES-divided format, as shown in
Fig. 2, ECM consists of a named entity extractor (NEE) and
named entity classifier (NEC) based on a simple LSTM
architecture. The extracted entities, which are in the red
frame, are fed into the NEC and classified into specific cate-
gories. In ECM, the positional feature and the categorical
feature are absolutely decoupled. The NEE extracts NEs by
labeling each word with tag {B, I, O} or {B, I, O, E, S}. The
NEC classifies the extracted candidate entities into specific
categories in {LOC, PER, ORG, MISC}. During the process,
entity-level information is introduced to the NER system.

Named Entity Extractor. The input for NEE remains at the
word level, and the basic model above can be transferred to
fit this situation directly. In Fig. 2, the sentence “Tom Cruise
lives in New York” is given as an example. For each single
word, NEE processes it as a sequence-labeling task and
labels it with the segment tags {B, I, O}. The sentence will be
segmented by these predictions, and the candidate entities
will be extracted according to their boundaries. For exam-
ple, the entities “Tom Cruise” and “New York” will be
extracted as candidate entities to be classified by the classi-
fier. In contrast to the LSTM-CRF model [7], [8], the CRF
layer has very little influence on NEE because of our uncon-
strained tagging schemes.

Named Entity Classifier. The input for NEE is a segmented
sentence consisting of words and entities, and the output is
the category of entities. The key point in this phase is how
to represent the candidate entities in a compatible way with
words. The entity-character embedding method, which
inserts the entity-level semantic meaning into the NER sys-
tem, will be described in Section 4.4.2. Instead of by piecing
together the judgments on each single word, entities are
classified according to the definite information they inher-
ently have. The remainder of the work is to compute the
probability of each category, which is similar in the basic
model. As shown in Fig. 2b, the candidate entities are classi-
fied into a specific category by NEC. The NER is completed
under the IOB/IOBES-divided format.

4.3 Ripple-LSTM Model

With the help of the WEL-dynamic format, a segment-level
NN is constructed by integrating the entity extraction phase
and classification phase into one. With a dynamic LSTM
sliding across a fixed LSTM, it is referred to as the ripple
LSTM and R-LSTM for simplicity. At each time step, the
sentence is segmented into three parts by the detection win-
dow. A series of actions defined by the WEL-dynamic format
are used in the transit of the detection window. The transi-
tion algorithm is presented in Section 4.3.1, and the adapted
neural architecture is shown in Section 4.3.2.

4.3.1 Transition Algorithm for the Detection Window

As shown in Fig. 3, a detection window (in gray) will seg-
ment a sentence into three parts: the left context, the chunk
in the window and the right context, and the arrow indi-
cates its transition process. For the content in the detection
window, we will assign an action defined in the WEL-
dynamic format. The primary function of the action is to
judge the property of the content and then decide how the
window transits next. For example, given the sentence in
Fig. 3, the word “Tom” will be inspected by the window
first. The action Fusion acknowledges the content may be a
part of an entity, but it is not time to judge its category
because it is incomplete. Fusing together with the next
word “Cruise”, the chunk “Tom Cruise” will be encom-
passed by the detection window. Clearly, “Tom Cruise” is a
name for a person and should be labeled by the action
Catch-PER, which means that the content in the window is

Fig. 2. Entity-centric model.
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an entire entity in the category of Person. Then, the detection
windowwill slide to the next word “lives”. After the content
is labeled byOut, the windowwill slide to the next word.

Although this transition-based labeling format is inspired
by the Shift-Reduce method introduced in [8], our WEL-
dynamic format is completely different from their method in
these aspects. First, the labeling target, which is the content
in the detection window, is definite in our format, while
Shift-Reduce can be considered as actions at the sentence
level, not tags for any unique object. Second, in our format,
the right side of the window will slide forward by a fixed
length of one word at each step; thus, only the n step is
needed when predicting an n-word sentence, whereas up to
2n steps can occur in the Shift-Reducemethod.

4.3.2 Architecture of R-LSTM

To present how the R-LSTM works in the dynamic scene,
we first provide a formal description of it in a static way.
For a sentence W (Eq. (2)) segmented by the detection win-
dow from the ith to the the jth word (j � i), each word is
represented by a fixed-dimension vector xw

i . The left con-
text, ½w1; w2; . . . ; wi�1�, is fed into a forward LSTM as an
embedding, and the hidden states are obtained

h
!¼ LSTM

����!ð½xw1 ; . . . ; xwi�1�Þ: (9)

For the right context, ½wiþl; . . . ; wn�, it is fed into a backward
LSTM in a reverse sequence, and the hidden states are
obtained by

h
 ¼ LSTM

 ����ð½xwjþ1; . . . ; xwn �Þ: (10)

The content in the detection window is placed into another
Bi-LSTM network, which is similar to Eq. (3), obtaining the

hidden states ½h!0; h 0�. Finally, the chunk together with its

contexts can be represented by a concatenation of four
unique hidden states

hj ¼ ½h!i�1; h
!0

j; h
 0

i; h
 

jþ1�; (11)

in which the chunk is uniquely identified by its ending

word’s index j since the right side of the detection window

propagates by one word after each step.
In Eq. (11), the process of obtaining the hidden states of

each chunk’s context is redundant. In other words, we will
repeat the calculation of Eqs. (9) and (10) when the detection
window slides. To make the R-LSTM work more effectively,
we need to catch the hidden features in a dynamic way. An
automatic construction of the representation algorithm is
proposed to reduce redundant computations in the NN, as
shown in Algorithm 1. Instead of repeating Eqs. (9) and (10)
for each chunk, all the possibly used representations of the
contexts are calculated by feeding the sentence into a fixed
Bi-LSTM network only once. A sliding Bi-LSTM is prepared
for the chunk in the detecting window. Because most
chunks only consist of one or two words, the overhead for
the sliding Bi-LSTM can remain at a low level.

Fig. 4 is the concise architecture of the R-LSTM and
attempts to present the dynamic process to obtain the

Fig. 3. Actions taken on Tom Cruise lives in New York.

Fig. 4. Architecture of the R-LSTM.
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hidden states hj. The context representation is computed
only once by the fixed Bi-LSTM, and then the window slides
to the next chunk. The entity-level information is conveyed
by the sliding Bi-LSTM to make the model judge more pre-
cisely. The final probability over actions is obtained by
Eq. (6). A dropout layer is used above the representation to
ensure that each part is fully trained. In the prediction
period, the maximum probability of the action is greedily
chosen left-to-right until the end of the sentence.

Algorithm 1. Automatic Construction of the
Representation

input: The input sentenceW ¼ ðw1; w2; . . . ; wnÞ; The set of posi-
tions of the detection window sliding on W , denoted as
A, in which each position is signed by the index of its
beginning and ending word, ði; jÞ; j � i;

Output: The representation h for the content in the detection
window and its contexts.

1: ½h!; h
 � ¼ BiLSTMð½xw

1 ; x
w
2 ; . . . ; x

w
n �Þ

2: for ði; jÞ in A do

3: ½h!0; h 0� ¼ BiLSTM0ð½xw
i ; x

w
2 ; . . . ; x

w
j �Þ

4: hj ¼ ½h!i�1; h
!0

j; h
 0

i; h
 

jþ1�
5: end for

return h

4.4 Input Embedding

The input of dynamic models relates to the semantic repre-
sentation of words and entities. For both dynamic models,
word embedding is a necessary part. For ECM, an entity-
character embedding method is proposed to represent enti-
ties compatibly.

4.4.1 Word-Character Embedding

For the ith word wi consisting of m characters ½w1
i ; w

2
i ; . . . ;

wm
i �, it can be represented by its word embedding eðwiÞ

xwi
¼ eðwiÞ; (12)

where e is the lookup table for word embedding. The ortho-
graphic features are represented by a Bi-LSTM (Eq. (1)), in
which the character sequence in wi is fed into two parallel
LSTMs in opposite directions. The hidden state hm

wi

�!
obtained

by the rightmost cell in the forward LSTM
����!

, together with h1
wi

 �
obtained by the leftmost cell in the backward LSTM

 ����
, are

concatenated as a character-level representation

xcwi
¼ ½hm

wi

�!
; h1

wi

 �
�: (13)

The word-character embedding is the combination of
Eqs. (12) and (13)

xwi ¼ ½xwi
; xcwi
�: (14)

4.4.2 Entity-Character Embedding

Embedding an entity is much more difficult than embed-
ding a word. In the classifier, the dimension of the entity’s
representation must be the same as that of the normal
words. We construct a structure that can generate an entity-
character embedding for any entity with a random length.

As shown in Fig. 5, the character-level embedding is
obtained by feeding the characters into a Bi-LSTM NN, and
the entity “New York” is an example to be processed. We
will obtain its embedding in the following ways:

� Entity Embedding. Embeddings for words can be
obtained from the lookup table. The mean value of
these embeddings of words can be calculated as the
final embedding of the entity. Thus, the entity
embedding has the same dimension as pretrained
vectors. For the words out of vocabulary (OOV) in
entities, they are initialized as zeros.

� Character-level embedding. Inspired by the method of
character embedding of words, we ignore the white
space between the words of an entity and take the
entity as an integral word. For example, in Fig. 5, the
entity “New York” is treated as “NewYork”. The
character embeddings are obtained from a lookup
table that is randomly initialized for every character.
These embeddings are fed into forward and back-
ward LSTMs with direct and reverse orders, respec-
tively. The final embedding is the concatenation of
the result from the forward and backward LSTM net-
works. Character-level embedding is able to capture
the orthographic features of entity chunks.

An entity-character embedding is generated by the
concatenation of an entity embedding and its character
embedding. In this paper, the dimensions for forward and
backward character LSTMs are both set as 100; thus, the char-
acter embedding for each entity has a dimension of 200. A
300-dimensional pretrained word embedding is used, which
results in a 500-dimensional representation for every entity
chunk after concatenation.

5 EXPERIMENTS

We have performed an extensive performance evaluation of
our proposed models over a real CoNLL dataset. Our goals
include the following:

� Analyzing the effectiveness of the functional mod-
ules of the architecture;

� Evaluating the properties of the extractor and the clas-
sifier under different segmentation formalisms, evalu-
ating the performance of the R-LSTMmodel and ECM
and comparingwith the state-of-the-artmodels;

� Assessing the effect of hard constraints.

Fig. 5. Example of entity-character embedding.
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5.1 Experimental Setup

We experiment on the four well-known NER datasets:
English and German from CoNLL2003 [2] and Spanish and
Dutch from CoNLL2002 [1]. All of these datasets contain
four types of entities, persons, locations, organizations and
miscellaneous entities, that do not belong to any previous
types. The details are as follows:

� CoNLL2002. The CoNLL2002 [1] consists of lan-
guage-independent named entities of Spanish and
Dutch. The data consist of three files per language:
one training file and two test files: testa (develop-
ment set) and testb (test set). The Spanish data are a
collection of news wire articles made available by
the Spanish EFE News Agency, and the Dutch data
consist of four editions of the Belgian newspaper
“De Morgen” from 2000.

� CoNLL2003. The CoNLL2003 [2] consists of indepen-
dently named entities of English and German. The
English data are a collection of news wire articles
from the Reuters Corpus, and the German data are a
collection of articles from Frankfurter Rundschau.

The statistics of these datasets are shown in Table 2. The
size of the development sets and test sets is approximately
one-fourth of the training sets. The NERmodels should han-
dle a tremendous amount of raw text in the training set,
which is up to 200,000 labeled tokens, to learn the features
of entities and nonentities. Our models are trained on the
training dataset and selected according to their performance
on the development dataset. Based on the datasets, pre-
trained word embedding is executed. To obtain pretrained
word embedding, we apply the Wikipedia2vec method on
the Wikipedia dump with approximately 2 billion tokens
and 73 million anchors, as done in [28]. For the other three
languages, we use the ready-made Wikipedia2vec-based pre-
trained word embeddings posted on the Internet, which can
be downloaded openly.1 These pretrained embeddings will
be fine-tuned during the training process.

Furthermore, before all the tokens are fed into NNs, it is
essential to preprocess the raw massive data [29], [30]. First,
all digits are replaced by a uniform symbol, which is taken as
a single word in a sentence. Second, OOVwords are replaced
by UNK and initialized to zeros in the same dimension
with pretrained word embeddings. OOVs will be fine-tuned
during the training process. For these OOVs, character

embeddings play an important role in disambiguating them
from each other. Third, all sentences in the training set are
shuffled and minibatched before each training epoch, which
will ensure that the model learns better. Finally, for the classi-
fier in the ECM, the words before and after the entity will also
be truncated.We choose the size to be 50 formost sentences in
the dataset to be shorter than 100 words. This operation will
accelerate the training process.

For evaluation, the F1 measurement metrics are used to
evaluate the final result of our systems, as described in [1]
and [2]. The F1 score can be calculated as

2

f
¼ 1

p
þ 1

r
; (15)

in which f; p; r represent the F1 score, precision and recall
rate, respectively. Similarly, the intermediate result pro-
duced by the NE extractor can also be evaluated by the F1
score. The performance of the classifier is evaluated by its
accuracy, which is the ratio of the number of correctly classi-
fied entities to the total number of entities.

After pretrained word embedding and token preprocess-
ing, the training is performed based on the backpropagation
algorithm. As reported by [8], stochastic gradient descent
(SGD) with gradient clipping can obtain a better performing
model. However, the convergence speed is very slow com-
pared to enhanced methods, such as Adam [31]. Our mod-
els are trained under the Adam method, and the learning
rate is set to 0.001. To avoid coadaptations of the concatena-
tion-styled representation, we set a dropout layer above the
final embedding layer just before feeding them into Bi-
LSTM networks. During the training process, the dropout
rate is set to 0.5. The training will be stopped early if there
are no improvements in the development set in 5 epochs.

In the R-LSTM model, the dimensions for the fixed Bi-
LSTM and sliding Bi-LSTM are set to 300. Consequently, the
representation of the detected content with its contexts is
represented as a 1200-dimensional vector. The proportion of
the representation for the detected content is equal to that of
the context, although the detected content always consists of
very short words in a long sentence. The setting is reasonable
because the actions mainly act on the content in the detection
window. In the ECM, the Bi-LSTM’s dimensions are set to
300, both in the extractor and the classifier. Fine-tuning these
dimensions has little influence on the final results. All of our
experiments are completed on NVIDIA Tesla M40 GPUwith
the TensorFlow framework.

5.2 Analysis on Functional Modules

In this section, we analyze the functional modules, such as
character embedding and pretrained embedding in NEE,
NEC and R-LSTM. In our opinion, it is necessary because
with a fundamental change in the NER pattern under
unconstrained schemes, the effects of each functional part
become uncertain. In Fig. 6, all the models are trained on
the training set and tested on the development set. The
effectiveness of character embedding and pretrained word
embedding are tested on the three models. For NEE, the
effect of the CRF layer will also be tested, and IOB is utilized
as its segmentation tags.

TABLE 2
The Number of Tokens (Entities) in CoNLL2003 and CoNLL2002

Dataset

Datasets CoNLL2003 CoNLL2002

English German Dutch Spanish

train 204,567 207,484 202,931 264,715
(23,499) (11,851) (13,344) (18,797)

dev 51,578 51,654 37,761 52,923
(5,942) (2,867) (2,616) (4,351)

test 46,666 52,098 68,994 51,533
(5,648) (3,673) (3,941) (3,558)

1. https://wikipedia2vec.github.io/wikipedia2vec/
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The effectiveness of the CRF layer in the extractor is
shown in Figs. 6a, 6b, 6c, and 6d. The line in black (NEE) is
almost at the same level as the line in green (NEE with
CRF), which means that NEE can perform well without the
help of the CRF layer. This is because our models separate
the segmentation tags with the categorical information, and
NEE can complete its work under an unconstrained labeling
format. To make the result more convincing, the LSTM-CRF
model is tested under the constrained IOB-original format
and shown in Figs. 6i, 6j, 6k, and 6l. In all the four lan-
guages, the LSTM-CRF model suffers from an obvious per-
formance degradation without the CRF layer, which does
not happen under the unconstrained schemes.

Character embedding is an effective way to capture the
orthographic and morphological features of words, whether
using a CNN [9] or a Bi-LSTM [8]. NER models for western
languages benefit greatly because the words of an entity are
generally capitalized and the affix of words may contain
some important information. Consequently, the NEE (red
line in Figs. 6a, 6b, 6c, and 6d) and R-LSTM (red line in
Figs. 6i, 6j, 6k, and 6l) have very poor performances without
character embedding. Unlike the extractor, the NEC can
benefit from character embedding to a very small extent, as
shown in Figs. 6e, 6f, 6g, and 6h. To classify an entity, the
semantic meaning of the word plays a more important role
than its morphology. In Fig. 6h, the NEC without character
embedding even performs better in Spanish. This abnormal

phenomenon may come from the insufficient training pro-
cess of NEC.

The pretrained word embedding maps the words into a
semantic vector space that is convenient to be fed into NNs.
Using pretrained word embedding makes the NN outper-
form the randomly initialized network. The word embed-
ding model will assign to each word a specific dimension
vector trained on unlabeled texts. The words with similar
semantics tend to be closer to each other in the embedding
space. This property makes the pretrained word embedding
quite useful in NEC. As shown in Figs. 6e, 6f, 6g, and 6h,
without external information from a pretrained embedding,
the accuracy of NEC decreases to a relatively lower level
(line in blue). In Figs. 6i, 6j, 6k, and 6l, the R-LSTM’s perfor-
mance is seriously degraded without pretrained word
embedding. However, in Figs. 6a, 6b, 6c, and 6d, the perfor-
mance of NEE is not greatly affected without word embed-
ding (line in blue), except for that in German. This result
reveals that the extractor can perform well only with the
orthographic and morphological features in words.

5.3 Performance Evaluation

This section first presents the performances of the extractor
and the classifier. Then, it gives the NER results of ECM
and R-LSTM. Finally, it provides the comparison with other
models.

Fig. 6. Effectiveness of each functional part in our models: NEE (a-d), NEC (e-h) and R-LSTM (i-l).
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5.3.1 Performances of NEE and NEC

NEE is constructed based on the Bi-LSTM without a CRF
layer. In this experiment, two kinds of segmentation strate-
gies for tags are evaluated. Themetric for NEE is the F1 score
(Eq. (15)) on the test dataset. As shown in Table 3, for each
language, two different segmentation formats (IOB and
IOBES) are evaluated for the NEE results. NEE achieves
extremely high F1 scores of approximately 95 in English,
Dutch and Spanish. In German, the F1 score is relatively
lower than in the other languages, which means that extract-
ing NEs fromGerman is not as easy as from other languages.
Regarding the aspect of the labeling format, we find that
using IOBES as segment tags is generally better than using
IOB. This result indicates that IOBES is more expressive than
IOB in the segmentation problem.Wewill explore the reason
why IOBES is a better choice even though there are more
hard constraints in IOBES (in Section 5.4).

We will feed all sentences containing entities into NEC
and evaluate the classification accuracy. Entities are classi-
fied into four different categories. The results from the four
languages are presented in Table 4. The accuracy of NEC in
English surpasses the accuracy in all other languages and
reaches 94.64. With the help of an external knowledge base,
our classifier’s property may be further improved. How-
ever, this is not the key point in this paper, and we will
leave it for future research.

5.3.2 Performance of NER

In this section, we evaluate ourmodels on different languages
and compare the performances with those of recent state-of-
the-art works. Our models are trained only on the training
sets given by the corpus and using the early stopping strategy
to choose the best model according to their performance
on the development sets. For fair comparisons, the methods
are classified into three categories, and NER results on
CoNLL2003 and CoNLL2002 in four different languages, EN
(English), GE (German), DU (Dutch) and SP (Spanish), are
shown in Table 5. The existingmodels are classified into three
categories according to the style of feature extraction. The tag-
ging schemes for these models are listed, and N/A indicates
that the scheme is unknown according to the corresponding
paper. Additionally, the symbol * is used to indicate the mod-
els that use external knowledge, such as gazetteers. Although
no external language-specific knowledge is used in our mod-
els, ourmodels can achieve comparable results.

� Auto-feature-inferring neural network models are those
that use NNs to extract features from a raw corpus
without human intervention. Our ECM and R-LSTM
models belong to this class. With these methods,
Kuru et al. [35] and Gillick et al. [36] completed NER
tasks purely based on characters, and their charac-
ter-based methods have shown great generalizability
but with relatively lower NER results. In the
CoNLL2003 English set, Sato et al. [25] utilized a seg-
ment-level NN model and achieved the best score.
The pipeline is very complicated in the model: using
a word-level model to generate segment lattices,
using SemiCRF at the segment level to obtain the cat-
egory of the lattices and finally judging the results by
a linear-chain CRF at the word level. The process is
similar to the extraction and classification phase in
our ECM, but ECM is more concise, relying on no
CRF layers. In the other three languages, Yadav et al.
[19] obtained state-of-the-art results by a combina-
tion of word-character embedding with affix infor-
mation. In our models, entity-level information is
instead input into the NN. The R-LSTM model can
obtain comparable results and even better results in
German and Dutch.

� Neural networks with handcrafted features are those
neural NER models that use human-defined features
to augment the performance. Although the F1 score
can reach 91.62 in English with the method of Chiu
and Nichols [9], many types of handcrafted features
(such as POS tag features, capitalization features, lex-
icons and other features) are employed. It is unfortu-
nate that no experimental NER results are presented
for the remaining languages. In our opinion, this
may be because it is difficult to generalize these fea-
tures into other languages. Our models only exploit
NNs without any external knowledge. The experi-
mental results show that our models can be applied
to different languages with robust performance.

� Feature-engineered machine learning systems rely heavily
on handcrafted features. NER results are relatively
lacking in early research without sufficient external
resources, such as the results by Carreras et al. [16] on
CoNLL2002 and Florian et al. [38] on CoNLL2003.
With a powerful external knowledge base extracted
fromWikidata, Luo et al. transferred the NER problem
into entity linking and obtained a superb F1 score of
91.20 in English. Agerri and Rigau [18] promoted a
common set of features for different languages and
tested on five different languages. Although it per-
forms well in English, our models outperform it in the
other three languages.

TABLE 3
Performance of NEE on Four Different Languages

Language Format Precision Recall F1

English
-iob 94.58 95.17 94.87

-iobes 94.91 94.74 94.82

German
-iob 87.52 80.97 84.12

-iobes 89.46 80.21 84.58

Dutch
-iob 94.99 94.37 94.68

-iobes 96.02 94.37 95.19

Spanish
-iob 93.37 93.81 93.59

-iobes 95.45 94.29 94.87

TABLE 4
Performance of NEC on Four

Different Languages

Language Accuracy

English 94.64
German 89.11
Dutch 90.38
Spanish 91.43
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In the experimental results, the basic Bi-LSTM model
described in Section 4.1 is tested as the baseline model under
the IOB-original and IOBES-original formats. ECM is operated
with the IOB-divided and IOBES-divided formats. Without the
CRF layer, our ECM surpasses the baseline model to a great
extent because of the unconstrained tagging scheme. As in
NEE, the NER results are better under IOBES than under IOB,
regardless of the original or divided format. This result con-
firms that the IOBES format is more expressive than the IOB
format. The tagging format for R-LSTM is the WEL-dynamic
format, which is inspired by the Shift-Reduce format in [8].
Compared with their S-LSTM, R-LSTM exploits a lean struc-
ture and exceeds the model by 3.42 in German, 7.77 in Dutch
and 2.97 in Spanish. Compared with ECM, it is a one-phase
model with even better performance. This result reveals that
our R-LSTM is a solidmodel and that theWEL-dynamic format
is a concise but expressive format. To further optimize the
model, the affix feature introduced by Yadav et al. [19] is inte-
grated into the input embedding as an additional 100-dimen-
sional vector. The F1 scores on the four languages are all
improved and surpass the best scores obtained by Yadav et al.
[19] under the IOB format. This is due to the entity-level infor-
mation in R-LSTMunder unconstrained schemes.

The efficiency is also an important aspect, especially when
deploying these models in practical applications. In Fig. 7, the
models are tested under the same experimental conditions on
the English training set. The time overhead is obtained by
recording the training time every 5 epochs in the training
phase. In order to be fair, the dimensions of the input

embeddings are set as 500 and the output of the LSTMs are set
as 300. As expected, the naive Bi-LSTM model is faster than
other complicated models, and approximately 2 times faster
without the CRF layer in our experiments. In ECM, the time
overhead, which is the sum ofNEE’s andNEC’s cost, remains
at the same level as that of the LSTM-CRF. R-LSTM models,
realized in static and dynamic ways, are also tested. Opti-
mized by Algorithm 1, the dynamic R-LSTM, which reduces

TABLE 5
NER Results on Four Different Languages

Auto-feature-inferring neural network models Tagging scheme EN GE DU SP

Arora et al. (2019) [14] category 90.76 - - -
Gregoric et al. (2018) [32] N/A 91.48 - - -
Yadav et al. (2018) [19] IOB 90.86 79.01 87.54 87.26
Sato et al. (2017) [25]* IOBES for segments 91.55 - - -
Yang et al. (2017) [33]* N/A 91.26 - - -
Ma and Hovy (2016) [34] IOBES 91.21 - - -
Lample et al. (2016) LSTM-CRF [8] IOBES 90.94 78.76 81.74 85.75
Lample et al. (2016) S-LSTM [8] Shift-Reduce 90.33 75.66 79.88 83.93
Kuru et al. (2016) [35] tags for char 84.52 70.12 79.36 82.18
Gillick et al. (2015) - BTS [36] span annotation 86.50 76.22 82.84 82.95
Santos and Guimareaes (2015) [37] IOB - - - 82.21

Neural network models with handcrafted features

Chiu and Nichols (2015) [9]* IOBES 91.62 - - -
Huang et al. (2015) [7]* IOB 90.10 - - -
Collobert et al. (2011) [6]* IOBES 89.59 - - -

Feature-engineered machine learning systems

Agerri and Rigau (2016) - Perception [18]* IOBES 91.36 76.42 85.04 84.16
Luo et al. (2015) - SemiCRF [15]* N/A 91.20 - - -
Florian et al. (2003) [38]* IOB 88.76 72.41 - -
Carreras et al. (2002) [16]* IOB - - 77.05 81.39

Our models with baselines

Bi-LSTM IOB 89.06 76.78 85.30 84.03
- IOBES 89.71 76.98 86.09 85.41
ECM IOB-div 90.80 77.13 86.51 85.71
- IOBES-div 90.63 77.60 87.20 86.87
Ripple LSTM WEL-dyn 90.67 79.08 87.65 86.90
Ripple LSTM + affix WEL-dyn 91.05 79.40 87.88 87.41

Fig. 7. Time overhead versus the training epoch.
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the redundant representation process of the context, can per-
form considerably faster than the static one. Compared with
the Bi-LSTM model, the extra cost in the dynamic R-LSTM
may come from the additional computing cost of the sliding
Bi-LSTM and the dynamic process. It is shown that both ECM
and the dynamic R-LSTM model are efficient enough under
the unconstrained schemes.

5.4 Assessment on Hard Constraints

In this section, we investigate the property of the prediction
results under different tagging schemes to verify the moti-
vation (Section 3.1) experimentally. For the IOB/IOBES for-
mat, the Bi-LSTM model is used to obtain the predictions
for the tags. For the IOB/IOBES-divided format, the ECM
model is used. All the results will be compared with R-
LSTM’s results in the aspect of hard constraints in the pre-
dictions and the recall rate of the NEs.

5.4.1 Hard Constraints in the Predicted Tags

We investigate the total number of hard constraints that occur
in the prediction sequence under different tagging schemes.
Under the IOB/IOBES-original format, the Bi-LSTM model is
used to predict tags for each word. Their divided format is
processed by our ECM to obtain the final results. The R-LSTM
is themodel utilized for the dynamic format. As shown in Fig. 8,
the constraints are counted on the four languages. The number
of hard constraints in the IOB/IOBES-original format is approxi-
mately two times larger than that in the IOB/IOBES-divided for-
mat because the constraints in categorical information are
eliminated in divided formats. With fewer hard constraints in
the prediction sequences, the ECMmodel performs much bet-
ter than the Bi-LSTMmodel. However, irrespective of the origi-
nal or divided results, we can obtain a better prediction result
under the IOBES format with even more hard constraints in
their predictions. This means that the hard constraint has a cer-
tain positive effect inNER tasks, whichwill be discussed later.

The hard constraints in the dynamic format with the R-
LSTMmodel are almost 0 for all languages. It is a great prop-
erty that indicates that the prediction process has a high
degree of consistency. The only constraints in English and
Dutch occur when the model fuses several words and then
labels the chunkwith actionOut. We can only ignore this type

of fault when we decode the prediction sequences because
the model does not provide any categorical information for
the chunk. However, in the IOB/IOBES format, these faults
from hard constraints are ignored manually when we decode
the result sequence. For example, when aword is predicted as
inside of an entity of Person and labeled as I-PER, and the for-
mer word is labeled asO, a hard constraint occurs in this situ-
ation. Instead of recognizing the word as an entity, we only
ignore the ungrammatical part. If we adopt a radical strategy
and accept the raw judgments from the models, the perfor-
mance will decrease to some extent, especially under the
IOBES format. Such a problem will not exist in our R-LSTM
model under the unconstrainedWEL-dynamic format.

As analyzed previously, the entity will suffer from hard-
constrained error as its length increases because the model
needs to judge n-times for an n-word entity. Any hard con-
straint in the prediction of these words will lead to the entity
being unrecognized. Therefore, we investigate the recall rate
against the length of the entity on the four different languages.
As shown in Fig. 9, the models are tested under specific tag-
ging schemes. For the entities in only one word, these models
are comparable with respect to recall rate. However, when the
entities’ length is 2 or larger, our divided format and dynamic
format can perform better than the original IOB or IOBES for-
mat. In particular, when the length is equal to 5 or more, our
R-LSTM model with a dynamic tagging scheme can perform
much better than any other NER style, which means that the
modelmore easily recognizes longer entities. Notably, there is
an entity with 14 words in it, and only under the IOB-divided
andWEL-dynamic formats is it recognized. The declines in the
recall rate are more gentle in the unconstrained tagging
schemes than in the original ones. The line in red, which indi-
cates the performance of the Bi-LSTM model under the
IOBES-original format, performs better than the IOB format
with a black line. This result once again demonstrates a better
attribute of the IOBES format than the IOB format, although it
contains many more constraints. Therefore, we will discuss
the effect of hard constraints onNER tasks.

Fig. 8. Number of constraints under different tagging schemes.

Fig. 9. Recall rate on 4 different languages against NE’s length.
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5.4.2 The Effect of Hard Constraints

In this section, we focus on the IOB and IOBES formats to
investigate the effect of hard constraints. In the IOBES for-
mat, the entities are recognized more explicitly than in the
IOB format. The model with the IOBES format needs to clar-
ify the beginning and the ending of each entity. However, in
the IOB format, only the beginning of the word should be
specifically labeled. When a word is labeled as B in the IOB
format, an entity must be extracted from this word, and the
only difference is the terminal position of this entity. How-
ever, in the IOBES format, the ending position must be con-
firmed by tag E; otherwise, the probable entity will be
ignored. A reconfirmation mechanism in the IOBES format
will make the entity be more accurately recognized. Conse-
quently, a more expressive tagging scheme IOBES format is
better than the simple IOB format, regardless of their origi-
nal or divided style. This is confirmed in the previous exper-
imental results.

However, the constraints in NE’s categorical information
are harmful to the performance of NER systems because
each entity should be judged many times with its category.
It is more reasonable to specify the entity’s boundary and
then classify it only once as a whole. Our proposed formats
in divided and dynamic styles realize it in different ways.

6 CONCLUSION

In this paper, dynamic entity-based NER models are pro-
posed based on simple LSTM NNs. They are segment-level
models in which entity-level features are represented and
utilized explicitly. The F1 scores of NER results in the four
languages show that our models are robust and perform
competitively with state-of-the-art models that have hand-
crafted features and external knowledge bases. In particular,
in R-LSTM, the scores on the German and Dutch test sets
even surpass the previous best results. Furthermore, we
derive two unconstrained tagging schemes in the divided
and dynamic styles. Both of them have superb properties for
NER labeling. With almost no hard constraints in the pre-
dicted tags, the tagging scheme with a dynamic style has
shown considerable potential in NER tasks, which might be
useful in other sequence tagging NLP scenarios such as sen-
tence chunking. In future work, the entity-based models can
be further optimized. For ECM, a more complicated struc-
ture and the interaction between NEE and NEC may make
sense. Moreover, the embedding of the entity is obtained just
by the mean of the embeddings of the words that constitute
the entity. Thus, how to train the entity embedding model
from a large unlabeled corpus and represent extracted enti-
ties directly is an important issue. Regarding other aspects, it
is meaningful to investigate the application of entity-based
models to other languages, areas andNLP tasks.
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