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ABSTRACT
Knowledge graph (KG), which proves to be an effective tool to
enhance recommender systems with rich semantics, has captured
growing research attention recently. By mining multi-hop relations
(named as path) between user-item interactions within a KG, im-
plicit user preference and other side information can be clearly
uncovered. Nevertheless, existing recommendation methods not
only have fundamental limitations in explainability, but also under-
utilize user-item path sets and show poor performance in handling
cold-start issues, which indicates reliable recommendation results
require massive prior knowledge.

To better address these issues, we propose a novel model architec-
ture named Path-enhanced Recurrent Network (PeRN). Specifically,
PeRN integrates a recurrent neural network (RNN) encoder with
an meta-path-based entropy encoder to further increase explain-
ability and reduce cold-start costs. RNN-based model has a strong
ability to represent sequential path semantics in KG, while entropy
encoder, as an efficient statistical analysis approach, leverage meta
path information to differentiate paths in one user-item interaction.
Moreover, we improve previous path extraction algorithms with
a bidirectional scheme to make PeRN more feasible. Comprehen-
sive experiment results on two real-world datasets, compared with
several state-of-the-art baselines, demonstrate our significant im-
provements with reasonable explanations and minimal amount of
prior knowledge in constructing KG.
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• Information systems→ Recommender systems; • Comput-
ing methodologies→ Semantic networks; Information extrac-
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1 INTRODUCTION
Recommendation system (RS), aiming to locate user preference
and provide items that the user might be interested in, has been
witnessed rapid growth during the past decade in search engines,
video portals and E-commerce. Collaborative Filtering (CF) as a
significant recommendation approach, has attracted much research
effort [5, 8, 27]. Despite its developments and universality in several
popular benchmarks, CF methods do suffer a lot from the faultiness
of incapability to harness side information and their excessively
single explanation [20]. To solve these problems, various representa-
tion learning models (i.e. embedding methods) have been proposed
such as Wide&Deep [6], Attentional Factorization Machine (AFM)
[30], etc. These methods achieve promising results by embedding
recommendation data into a low-dimensional continuous vector
space and alleviate the disadvantages of CF to a certain extent with
encouraging accuracy. But they regard each user-item interaction
as an irrelevant vector and do not take relations into account, which
means these embedding methods still remain a poor explainability
in recommendation.

In order to resolve the limitation of CF and representation learn-
ing models, knowledge graph (KG), as a well-structured auxiliary
data form evolving from semantic web, has been naturally applied
in recommendations to boost its reasoning ability and explainability
[21, 24]. Information in KG is organized by triples, e.g. (head, rela-
tion, tail), combining head and tail entities with relations (relation).
In KG-enhanced recommendation methods, all the users and items
can be regarded as entities together with other background infor-
mation. By exploiting multi-hop relations from target user entity
within a KG, the user preference and its semantics can be explicitly
revealed. Such correlation is recorded as a path and shown as the
following example:
Example: (Tom, Like, Billie Jean) ∧ (Billie Jean, SungBy, Michael
Jackson)∧ (Michael Jackson, Sing, Scream)⇒ (Tom,mayLike, Scream)
Evidently, each target user entity owns copious paths which lead to
different items that user potentially likes, offering precise sequen-
tial information for bi-classification and top-K recommendation
tasks. As a result, these path-based methods [12, 26] soon received
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Figure 1: The overall framework of the proposed model PeRN

considerably more research interests than traditional translation-
based methods such as TransE [3], TransH [29] and collaborative
knowledge graph embedding method (CKE) [33].

However, current path-based methods exist a critical defect, that
is, they neglect the difference between paths and negatively impact
the accuracy and explainability of recommendations. Take the toy
KG in Figure 1 for instance, the potential result of “If Tom likes
Scream" can be reasoned by the following path set:

• 𝑝1 = Tom
𝐿𝑖𝑘𝑒−−−−→Billie Jean

𝑆𝑢𝑛𝑔𝐵𝑦
−−−−−−−→Michael Jackson

𝑃𝑟𝑜𝑑𝑢𝑐𝑒−−−−−−−→History
𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑆𝑜𝑛𝑔
−−−−−−−−−−−→Scream;

• 𝑝2 = Tom
𝐿𝑖𝑘𝑒−−−−→Billie Jean

𝑆𝑢𝑛𝑔𝐵𝑦
−−−−−−−→Michael Jackson

𝑆𝑖𝑛𝑔
−−−−→Scream;

• 𝑝3 = Tom
𝐿𝑖𝑘𝑒−−−−→Billie Jean

𝑆𝑢𝑛𝑔𝐵𝑦
−−−−−−−→Michael Jackson

𝐼𝑠𝐵𝑟𝑜𝑡ℎ𝑒𝑟𝑂𝑓
−−−−−−−−−−−→Janet Jackson

𝑆𝑖𝑛𝑔
−−−−→Scream.

Obviously, 𝑝3 is less credible than 𝑝1 and 𝑝2 in explaining the
result above — the act “user like song sungby singer isbrotherof
singer sing item" is quite uncommon and unconvincing in music
recommendation field. Indiscriminately processing the paths reduce
information utilization, more seriously, can increase the cold-start
costs. In Knowledge-aware Path Recurrent Network (KPRN) [28], the
prior knowledge which is used to complete KG even accounts for
50% of the original dataset, making it difficult to apply the model
in industry.

To fill the research gap, we propose a new recommendation
model named Path-enhanced Recurrent Network (PeRN), which ex-
tracts not only path information in KG, but also meta path set to
differentiate the path contribution to one user-item pair. Figure 1
illustrates the overall framework of our proposed model. Inspired
by previous work [34], we innovatively use meta path, a general
conception in heterogeneous information network (HIN), to gener-
alize the structure of complicated paths. Meta path is a path schema
consisting of a series of entity-type data and relation data. We take

two path cases for example: “Tom
𝐿𝑖𝑘𝑒−−−−→Billie Jean

𝑆𝑢𝑛𝑔𝐵𝑦
−−−−−−−→Michael

Jackson
𝑆𝑖𝑛𝑔
−−−−→Scream" and “Amy

𝐿𝑖𝑘𝑒−−−−→Love Story
𝑆𝑢𝑛𝑔𝐵𝑦
−−−−−−−→Taylor Sw-

ift
𝑆𝑖𝑛𝑔
−−−−→Speak now". They can both be abstracted into the samemeta

path “User
𝐿𝑖𝑘𝑒−−−−→Song

𝑆𝑢𝑛𝑔𝐵𝑦
−−−−−−−→Singer

𝑆𝑖𝑛𝑔
−−−−→Song". By doing this, all

the paths in the dataset can be abstracted into several kinds of user
habits, which will be calculated to credibility values in the entropy
encoder in our model. Thus the confidence ratio between different
paths in the same user-item pair can be obtained. As for path set,
we adopt bidirectional long short-term memory (bi-LSTM) network
and a two-layer fully connected neural network to compute se-
quential entity and relation vectors to a certain score. Afterwards a
weighted pooling layer is performed to combine these path scores
and credibility values from entropy encoder to a predicted result. To
learn the parameters effectively, we propose to use logarithmic loss
function along with ridge penalty, i.e. 𝐿2 regularization, to train our
model. Furthermore, we design bidirectional search method, which
is also meta-path-aided, to enhance the efficiency of path extraction
and make PeRN more doable. To validate the ability of PeRN in
recommendation accuracy and solving cold-start issue, we conduct
extensive experiments on two real-world dataset. Additionally, we
visualize a user-item interaction example which is random chosen
to illustrate the enhancement in explainability of our model.

The main contributions of this work are as threefold:

• We innovatively introduce meta path to general path-based
methods and propose a novel end-to-end recurrent neural
network model to enhance explainability and reduce cold-
start costs of KG recommendation.
• We improve the path extraction method with a bidirectional
strategy to efficiently extract path data from KG, which
makes it possible to apply PeRN in real scenes.
• We have performed experiments on two real-world datasets
from bi-classification and top-K perspectives, compared with
several representative baselines, to highlight the importance
of integrating KG into recommendation and verify the prac-
ticality of our proposed method.

The rest of this paper is arranged as follows. Section 2 gives a
brief review on two kinds of related works. Then section 3 and
section 4 explain the model PeRN in details. Experiment results
for verifying this model are shown in section 5. At last, section 5
contains conclusions plus some ideas for further work.
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2 RELATEDWORK
This section provides an general summary of several state-of-the-
art methods of integrating KG into recommendation, which can be
mainly sorted into translation-based and path-based methods.

2.1 Translation-based Methods
Prior research has proposed various techniques [2, 3, 14, 16, 29] to
embed KG into a low-dimensional vector space, which make KG
computable. These methods can be roughly divided into two cate-
gories [25]: 1) Translational distance models, including translation-
based and other distance models, and 2) Semantic matching mod-
els, including tensor-factorization-based and neural-network-based
models. Among them, the translation-based models such as TransE
[3] and its variants [13, 14, 29], using the idea of translation to
transform entities and relations into vectors to embed KG, have
been widely used in KG recommendation because of their simplic-
ity and effectiveness. CKE [33] firstly adopts Bayesian TransR [14]
to generate user latent vector and KG-aided item latent vector to
collaboratively learn the predicted result. DKN [24], leveraging
four different translation-based model [3, 13, 14, 29] to embed KG
and enrich side information, also applies a attention-based deep
convolutional neural network to news recommendation field. More
recently, TUP [4] employs TransH [29] to predict user preference
from KG for improving recommender system.

Such translation-based methods significantly augment the accu-
racy of results. However, they neglect to explore the correlations
(i.e. multi-hop relations) between user-item pairs. In other words,
these methods fail to explain why the user have interest in these
items. Thus we argue that these methods lack explainability and
reasoning ability in recommendation.

2.2 Path-based Methods
In the aspect of path-based methods, Yu et al. [32] integrates hetero-
geneous information network to matrix factorization for personal-
ized entity recommendation. This is a new idea that not only firstly
introduces user-item-path conception to recommender systems
but also inspires other researchers start to apply path in KG for
convinced recommendation. As a consequence, various path-based
approaches [11, 28, 34] have sprung up nowadays to memorize
sequential implicit information in KG. KSR [11] incorporates gated
recurrent unit (GRU) and key-value memory network (KV-MN)
to capture sequential user preference from knowledge base, while
RKGE [21] leverage an recurrent network batch to embed path se-
mantics to augment interpretability. In KPRN [28], a long short-term
memory (LSTM) network is utilized to encode path and explore the
connectivity between users and items. Also, EIUM [12] spreads this
thought to multi-modal knowledge base and design a self-attention
matrix to mine deep information from path.

Though these methods endow the explainability and reasoning
ability to recommend systems, there is still a severe defect that is
the underutilization of mining semantics in path. This flaw also
causes low performance in dealing with cold-start issues: the prior
knowledge of completing KG is extremely costly. Moreover, path
extraction is also a time-consuming and labor-intensive step in
path-based methods as the time complexity of algorithm grows
exponentially with the length of path.

Table 1: Notations

Descriptions Notations

User set U = {𝑢1,𝑢2, ...𝑢 |U| }
Item set I = {𝑖1, 𝑖2, ...𝑖 |I | }
User-item interaction set A = {𝑎1, 𝑎2, ...𝑎 |A| }
Entity set E = {𝑒1, 𝑒2, ...𝑒 |E | }
Relation set R = {𝑟1, 𝑟2, ...𝑟 |R | }
Knowledge graph KG = {(ℎ, 𝑟, 𝑡 ) |ℎ, 𝑡 ∈ E, 𝑟 ∈ R}
Schema graph G = R𝑔×𝑔 , 𝑔 = |typeof(E) |
Interaction 𝑎𝑘 in KG 𝑎𝑘 = (𝑢𝑚, 𝑖𝑛),𝑢𝑚 ∈ E, 𝑖𝑛 ∈ R
A path 𝑝 between 𝑎𝑘 𝑝 = 𝑢𝑚

𝑟1−−→ 𝑒1
𝑟2−−→ 𝑒2, ...

𝑟𝑙−→ 𝑖𝑛

Meta path𝑚𝑝 between 𝑎𝑘 𝑚𝑝 = typeof(𝑢𝑚)
𝑟1−−→, ...typeof(𝑖𝑛)

Paths between 𝑎𝑘 𝑃𝑘 = {𝑝1, 𝑝2, ..., 𝑝 |𝑃𝑘 | }
Meta paths between 𝑎𝑘 𝑀𝑃𝑘 = {𝑚𝑝1,𝑚𝑝2, ...𝑚𝑝 |𝑀𝑃𝑘 | }
Path set P = {𝑃1, 𝑃2, ...𝑃 |A| }
Meta path set M = {𝑚𝑝1,𝑚𝑝2, ...,𝑚𝑝 |M| }
Hidden state vectors

−→
ℎ 𝑙+1,

←−
ℎ 𝑙+1, ℎ

Weight matrix 𝑊𝑓 ,𝑊𝑖 ,𝑊𝐶 ,𝑊𝑜 ,𝑊1,𝑊2

Sigmoid function 𝜎

Loss function L

3 PROBLEM FORMULATION
Before elaborating our model, we formally define the notations
used throughout this paper in Table 1. Same as other recommender
systems, we let U = {𝑢1, 𝑢2, ..., 𝑢 |U |} and I = {𝑖1, 𝑖2, ..., 𝑖 |I |} de-
note user set and item set respectively.A = {(𝑢, 𝑖) |𝑢 ∈ U, 𝑖 ∈ I} =
{𝑎1, 𝑎2, ..., 𝑎 |A |} represents all the interactions between users and
items in our dataset.

Definition 3.1. Knowledge Graph. As entity set E and relation set
R have been denoted, knowledge graph (KG) can be defined as
KG = {(ℎ, 𝑟, 𝑡) |ℎ, 𝑡 ∈ E, 𝑟 ∈ R} where (ℎ, 𝑟, 𝑡) is a triple combining
head entity ℎ and tail entity 𝑡 by relation 𝑟 . Here, every user and
item in U and I could be searched as an entity in KG, which
makes path extraction between user-item interactions possible. By
abstracting entities in E to entity types (shown as function typeof()
in table above), the schema of KG can be revealed along with rela-
tions, which is denoted as a two dimensional matrix G.

Definition 3.2. Path and Meta Path. Given an interaction 𝑎𝑘 =

(𝑢𝑚, 𝑖𝑛), a sequence of triples that connect user 𝑢𝑚 and item 𝑖𝑛
can be foundwithinKG as {(𝑢𝑚, 𝑟1, 𝑒1), (𝑒1, 𝑟2, 𝑒2), ..., (𝑒𝑙−1, 𝑟𝑙 , 𝑖𝑛)},
which we record as a path: 𝑝 = 𝑢𝑚

𝑟1−−→ 𝑒1
𝑟2−−→ 𝑒2 ...

𝑟𝑙−→ 𝑖𝑛 . Therefore,
all the qualified paths of one interaction 𝑎𝑘 and interaction set
A are denoted as 𝑃𝑘 = {𝑝1, 𝑝2, ..., 𝑝 |𝑃𝑘 |} and P = {𝑃1, 𝑃2, ...𝑃 |A |}
individually. As each path owns a meta path by abstracting its enti-
ties to entity types, we denote𝑚𝑝 as the meta path of path 𝑝 and
𝑀𝑃𝑘 = {𝑚𝑝1,𝑚𝑝2, ...,𝑚𝑝 |𝑀𝑃𝑘 |} as the meta path set of path set 𝑃𝑘
(also of interaction 𝑎𝑘 ). Meta path of all interactions, denoted as set
M , can be obtained by certain traversal of schema graph G.

Besides, there are three points to be emphasized: 1)U,I ⫋ E
and U ∩ I = ∅. 2) 𝑀𝑃𝑘 and 𝑃𝑘 are both generated from 𝑎𝑘 , so
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|𝑀𝑃𝑘 | ⩽ |𝑃𝑘 |, the equal sign holds when all path types in |𝑃𝑘 | are
different. 3)M = 𝑀𝑃1 ∪𝑀𝑃2 ∪ ... ∪𝑀𝑃 |A | .

Task Definition: With the given user-item interaction 𝑎𝑘 and its
path set 𝑃𝑘 , the goal of PeRN is formulated as follows:

𝑦𝑘 = 𝑓Δ (𝑃𝑘 ) (1)

where 𝑦𝑘 is the predicted score of interaction 𝑎𝑘 and 𝑓 denotes the
function of PeRN with parameters Δ.

4 PATH-ENHANCED RECURRENT
NETWORK

In this section, we give a thorough description and elaboration of
our proposed PeRN for incorporating KG to recommendation. So
as to expound PeRN more clearly, we divide this section into 5
basic units: Firstly, we design a bidirectional path extraction algo-
rithm to boost the efficiency of discovering path set between user
and item entities in KG. Then, we adopt a Bi-LSTM network as a
model to embed path set and memorize it as a set of predicted score.
Furthermore, the entropy encoder is created to differentiate the
contributions of paths in one path set by analyzing the informa-
tion gain of their meta path. Finally, weighted pooling layer and
optimization steps are used for jointly combining the scores and
learning.

4.1 Bidirectional Path Extraction
KG generally contains millions of entities and relations, which
indicates it is labor-intensive and time-consuming to find all paths
between two entities. In addition, the difficulty of searching a path
increases exponentially with its length that makes path extraction
even harder.

Aiming to work out this issue, we design a meta-path-aided bidi-
rectional path extraction algorithm to retrieve all qualified paths.
As previous work [19] has discussed, we regard paths longer than
six hops as noises. Thus this bidirectional scheme, described in
Algorithm 1, can change the complexity of the search step from a
maximum of six hops to a maximum of three hops. In preliminaries,
we firstly abstract KG to its schema graph by modifying entities in
triples to entity types. By removing all duplicates in these processed
triples, the schema graph can be displayed via a matrix, of which
every side is a list of all entity types. And elements in matrix can
store relation type information between entity types. Accordingly,
the whole meta path setM can be retrieved by traversal of this
directed graph. Given a knowledge graph KG, user-item interac-
tion set A and meta path setM, algorithm 1 can help us find a
whole path set P. After the initialization of P, for each interaction
𝑎𝑘 , we adopt depth-first-search (DFS) idea to retrieve candidate
paths (lines 4-5) and meta-path-aided idea (lines 6-20) to choose
target paths bidirectionally. As a matter of fact, candidate sets 𝑆1
and 𝑆2 can be used in parallel for different meta path so that we sig-
nificantly enhanced the efficiency of path extraction by designing
multi-threaded program in reality.

4.2 Recurrent Network Encoder
With the booming development of deep learning models, recur-
rent Neural Network(RNN) has become increasingly more widely
used in processing sequence data like path information [21, 28].

Algorithm 1: Bidirectional Path Extraction
Input: Knowledge graph KG = {(ℎ, 𝑟, 𝑡) |ℎ, 𝑡 ∈ E, 𝑟 ∈ R},

user-item interaction set A = {𝑎1, 𝑎2, ...𝑎 |A |},
meta path setM = {𝑚𝑝1,𝑚𝑝2, ...,𝑚𝑝 |M |}.

Output: Path set P = {𝑃1, 𝑃2, ..., 𝑃 |A |}.
1 Initialize: P ← ∅ ;
2 for each 𝑎𝑘 = (𝑢𝑚, 𝑖𝑛) in A do
3 𝑃𝑘 ← ∅;
4 𝑆1 ← retrieve all paths by head = 𝑢𝑚 within 3 hops;
5 𝑆2 ← retrieve all paths by head = 𝑖𝑛 within 3 hops;
6 for each meta path𝑚𝑝 inM do
7 𝑙 ← length of𝑚𝑝;
8 𝑃1 ← ∅ // left sub path set;
9 𝑃2 ← ∅ // right sub path set;

10 for each 𝑝𝑙 in 𝑆1 do
11 if 𝑝𝑙 satisfies𝑚𝑝 [0→ 2 ∗ ⌊𝑙/2⌋] then
12 Add 𝑝𝑙 to 𝑃1;

13 for each 𝑝𝑟 in 𝑆2 do
14 if 𝑝𝑟 satisfies𝑚𝑝 [2 ∗ ⌊𝑙/2⌋ → 2 ∗ 𝑙] then
15 Add 𝑝𝑟 to 𝑃2;

16 for each 𝑝𝑙 , 𝑝𝑟 in 𝑃1, 𝑃2 do
17 if 𝑝𝑙 [𝑡𝑎𝑖𝑙] = 𝑝𝑟 [𝑡𝑎𝑖𝑙] then
18 𝑝 ← combine 𝑝𝑙 and reverse(𝑝𝑟 );
19 Add 𝑝 to 𝑃𝑘 ;

20 Add 𝑃𝑘 to P;
21 return P

In our model PeRN, as relations in paths are not always in one
direction like (Michael Jackson, Cooperate_with, Janet Jackson)
and (Janet Jackson, Cooperate_with, Michael Jackson), we choose
a bidirectional long short-term memory (bi-LSTM) based model,
illustrated in Figure 2, to better sequential information and output
the predicted score of the path. In a word, here input a path 𝑝 and
output its predicted score 𝑠 from this network.

A path here could be recorded as a sequence of entities and re-
lations like 𝑝 = [𝑢𝑚, 𝑟1, 𝑒1, 𝑟2, 𝑒2 ..., 𝑟𝑙 , 𝑖𝑛] as well as the number of
relations less than or equal to six. In order to embed this multi-hop
data to a series of vector, we firstly transform this l-hop path to
𝑙 + 1 consecutive vectors like (𝑢𝑚, typeof(𝑢𝑚), 𝑟1), (𝑒1, typeof(𝑒1),
𝑟2), ...(𝑒𝑙−1, typeof(𝑒𝑙−1), 𝑟𝑙 ), (𝑖𝑛, typeof(𝑖𝑛), 𝑛𝑢𝑙𝑙). Then,map entity
index which is a number from 0 to millions to a 𝑑 − 2 dimension
vector with numbers close in size. After concatenating entity vec-
tor with entity type index and relation index, here we can get a 𝑑
dimension vector represent a hop of the path. The 𝑞-th vector in
path can be defined via the following equation:

𝛼𝑞 = Map(𝑒𝑞−1) ⊕ 𝑒 ′𝑞−1 ⊕ 𝑟𝑞 (2)

where ⊕ is the operation of concatenation and 𝑒 ′ is the type
of entity 𝑒 . After this step, path 𝑝 is represented as a vector set
{𝛼1, 𝛼2, ..., 𝛼𝑙+1}, which could be the input of this model. With a
strong ability to memorize sequential semantics [15], LSTM [9] is
chosen to be the main body of recurrent network encoder, and the
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Figure 2: The architecture of recurrent network encoder in
PeRN. Here entity type song is the item in recommendation
issue.

𝑞-th vector 𝛼𝑞 of input vector set is computed as follows:

𝑓𝑞 = 𝜎 (𝑊𝑓
¤(ℎ𝑞−1 ⊕ 𝛼𝑞) + 𝑏 𝑓 )

𝑖𝑞 = 𝜎 (𝑊𝑖
¤(ℎ𝑞−1 ⊕ 𝛼𝑞) + 𝑏𝑖 )

𝐶𝑞 = tanh(𝑊𝐶 ¤(ℎ𝑞−1 ⊕ 𝛼𝑞) + 𝑏𝐶 )

𝐶𝑞 = 𝐶𝑞−1 ⊙ 𝑓𝑞 +𝐶𝑞 ⊙ 𝑖𝑞
𝑜𝑞 = 𝜎 (𝑊𝑜

¤(ℎ𝑞−1 ⊕ 𝛼𝑞) + 𝑏𝑜 )
ℎ𝑞 = 𝑜𝑞 ⊙ tanh(𝐶𝑞)

(3)

where 𝑓𝑞 , 𝑖𝑞 and 𝑜𝑞 ∈ R𝑑
′
denote forget, input and output gate;

𝐶𝑞 and 𝐶𝑞 ∈ R𝑑
′
denote represent candidate values vector and

memory state vector;𝑊𝑓 ,𝑊𝑖 ,𝑊𝐶 and𝑊𝑜 ∈ R𝑑
′×(𝑑′+𝑑) are the

weightmatrices initializedwith a random value, while𝑏 𝑓 ,𝑏𝑖 ,𝑏𝐶 and
𝑏𝑜 are bias vectors of each gate or cell; 𝜎 and tanh denote sigmoid
and hyperbolic tangent activation function; ⊙ and ⊕ represent
hadamard product and concatenation respectively. Consequently,
the hidden state vector ℎ𝑞 ∈ R𝑑

′
of 𝑞-th step is obtained by last

hidden state ℎ𝑞−1 and given 𝛼𝑞 . After 𝑙 +1 iterations, the last hidden
state vector ℎ𝑙+1 can be considered to hold the sequential path
information. To explain more precisely, we simplify this process
into the following equation:

ℎ𝑙+1 = LSTM( [𝛼1, 𝛼2, ..., 𝛼𝑙+1]) (4)

As shown in Figure 2, our model PeRN takes bi-LSTM into consider-
ation which adopts a forward LSTM and a backward LSTM and then
concatenate its bi-directional results to remember path information

more firmly. This step can be formulated in the equations below:
−→
ℎ 𝑙+1 = LSTM( [𝛼1, 𝛼2, ..., 𝛼𝑙+1])
←−
ℎ 𝑙+1 = LSTM( [𝛼𝑙+1, ..., 𝛼2, 𝛼1])

ℎ =
−→
ℎ 𝑙+1 ⊕

←−
ℎ 𝑙+1

(5)

After embedding the path 𝑝 into a representative vector ℎ, the
final step of recurrent network encoder is to convert it to a pre-
dicted score by establishing a simple neural network with two
fully-connected layers. So the score 𝑠 of path can be calculated in
the following equation:

𝑠 =𝑊 T
2 ReLU(𝑊

T
1 ℎ) (6)

here𝑊 T
1 and𝑊 T

2 mean the coefficient weights of layer 1 and layer 2
respectively and we adopt rectified linear unit (ReLU) as activation
function in each neuron with omitted bias. In fact, score 𝑠 is a 1 × 1
dimension matrix, and we directly treat it as a scalar for simplicity.

4.3 Entropy Encoder
Given an interaction 𝑎𝑘 = (𝑢𝑚, 𝑖𝑛) and its extracted path set 𝑃𝑘 =

{𝑝1, 𝑝2, ..., 𝑝 |𝑃𝑘 |}, the scores of each path could be stored in a set
𝑆𝑘 = {𝑠1, 𝑠2, ..., 𝑠 |𝑃𝑘 |}. By abstracting entity instance to entity type
in path, the meta path set of 𝑎𝑘 could be denoted as𝑀𝑃𝑘 = {𝑚𝑝1,
𝑚𝑝2, ...,𝑚𝑝 |𝑀𝑃𝑘 |}, where |𝑀𝑃𝑘 | ⩽ |𝑃𝑘 | (cf. Section 3). Clearly, it is
irrational to predict 𝑎𝑘 by weighted average their path scores (cf.
Section 1). To tackle this issue and increase the explainability, we
design a information entropy based method.

Inspired by its applications and enhancements in computer vi-
sion field recently [18, 22], we design an entropy-based weighting
encoder to differentiate path contributions by computing its infor-
mation gain to specific interaction. In practice, all the interactions
are divided by positive feedback and negative feedback which in-
dicates each path 𝑝 in its path set 𝑃𝑘 shares the same target 1 or
0. Here we collectively define path and meta path with target 1 as
confidence path (CP), and otherwise non-confidence path (NP). By
traversing and counting all path 𝑝 in the whole path set P, it is
attainable to obtain the frequency of “𝑝 is CP" considering it is a
binary classification problem. So the information entropy of event
“if 𝑝 is CP" (denote as event D which owns values 0 and 1) is defined
as following:

Ent(D) = −
∑
𝑗 ∈0,1

P(D= 𝑗) log2 P(D= 𝑗) (7)

Although there are millions of paths in P, the numbers of meta
path are limited, which we denote as integer𝑚. So we can endow
a path𝑚 boolean features to determine its type of meta path and
further judge its contribution to event D. Similar as Equation(5),
for feature 𝐸𝑔 (𝑔 ∈ [1,𝑚]), we can find its conditional entropy for
event D as following:

Ent(D|𝐸𝑔 ) =
∑
𝑖∈0,1

P(𝐸𝑔=𝑖)Ent(D|𝐸𝑔=𝑖) (8)

where Ent(D|𝐸𝑔=𝑖) is conditional entropy by fixing 𝐸𝑔=𝑖 andwritten
as the equation below:

Ent(D|𝐸𝑔=𝑖) = −
∑
𝑗 ∈0,1

P(D= 𝑗 |𝐸𝑔=𝑖) log2 P(D= 𝑗 |𝐸𝑔=𝑖) (9)
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In this way, the information gain of event D by given feature 𝐸𝑔
could be obtained:

Gain(D,𝐸𝑔 ) = Ent(D) − Ent(D|𝐸𝑔 ) (10)

For currently given interaction 𝑎𝑘 and its meta path set𝑀𝑃𝑘 , each
𝑚𝑝𝑖 (𝑖 ∈ [1, |𝑀𝑃𝑘 |]) could find its unique corresponding informa-
tion gain by matching 𝐸𝑔=𝑚𝑝𝑖 . Here we normalize the information
gain of each meta path to get their weights:

𝑤𝑖 =
Gain(D,𝐸𝑔=𝑚𝑝𝑖 )

Σ
|𝑀𝑃𝑘 |
𝑗=1 Gain(D,𝐸𝑔=𝑚𝑝 𝑗 )

(11)

where 𝑤𝑖 is the weight of i-th path 𝑝𝑖 in path set of 𝑎𝑘 and can
further differentiate the score 𝑠𝑖 in 𝑆𝑘 . And all weights of the same
interaction 𝑎𝑘 will be put in a weight set𝑊𝑘 for later step.

4.4 Weighted Pooling Layer
After getting a score set 𝑆𝑘 = {𝑠1, 𝑠2, ..., 𝑠 |𝑃𝑘 |} and its corresponding
weight set𝑊𝑘 = {𝑤1,𝑤2, ...,𝑤 |𝑃𝑘 |}, we adopt a weighted pooling
layer combining them to attain the final predictive score, which is
formulated as:

𝑦𝑘 = 𝜎 (
|𝑃𝑘 |∑
𝑖=1

𝑤𝑖𝑠𝑖 ) (12)

where 𝜎 is a sigmoid activation function to map final score into a
range of 0 to 1.

4.5 Optimization
Since all the interactions inA can be observed as positive feedback
and negative feedback (cf. Section 4.3), we regard our recommenda-
tion task as a binary classification issue with 0 for negative and 1
for positive, similar as previous work [28]. We adopt cross entropy
loss to optimize our result. With the given interaction 𝑎, our loss
function is defined as follows:

L = −
∑
𝑎∈A
(𝑦 log𝑦 + (1 − 𝑦) log(1 − 𝑦)) (13)

where 𝑎 is all interactions in A, 𝑦 and 𝑦 is the observed feedback
and predictive score of 𝑎. We also conduct 𝐿2 regularization on the
parameters of our PeRN, which is dropped here for simplicity.

5 EXPERIMENTS AND ANALYSIS
In this section, we perform various experiments on 2 real-world
recommendation datasets, which are music recommendation and
movie recommendation scenarios, to evaluate our PeRN with sev-
eral state-of-the-art baselines.

5.1 Dataset Description
To more realistically construct KG for recommendation and mine
user preference by path, we here adopt two benchmark datasets: 1)
KKBox1, which is a music domain recommendation dataset from
WSDM cup Challenge 2018 and provided by KKBox Music Stream-
ing Service. 2) IM-1M, composed of IMDb2 and MovieLens-1M3

datasets, is a common movie recommendation dataset that has been

1https://www.kaggle.com/c/kkbox-music-recommendation-challenge
2https://www.kaggle.com/suchitgupta60/imdb-data
3https://grouplens.org/datasets/movielens/

widely used in KG-enhanced recommendation task recently [21, 28].
The statistics of KKBox and IM-1M is shown in Table 1 below.

Table 2: Statistics of KKBox and IM-1M

Dataset KKBox IM-1M

User-Item
Interaction

#Users 34,403 6,040
#Items 2,296,320 3,274
#Interactions 3,696,465 370,023
Data Density 0.0047% 1.87%

Knowledge
Graph

#Entities 2,562,937 15,439
#Entities Types 5 5
#Relation Types 8 9
#Triples 16,237,068 442,409

Path

#Path 41,400,408 345,344
Avg.Path.Length 5.11 4.74
#Meta Path Types 21 46
Avg.Meta.Path.Length 5 5.37

The fundamental section of KG-enhanced recommendation data-
set is to construct domain KG. Firstly, the basic part of KG can
be selectively generated from background information in original
dataset. Then, in order to integrate user set to KG, whichmakes find-
ing paths between users and items possible, a group of interactions
should be split to KG as compensations. KKBox not only provides a
huge amount of user-item interaction data with positive feedback
1 and negative feedback 0, but also several side-information like
artist, lyricist, composer, genre, which indicates this music domain
KG can be straightly constructed. In IM-1M, IMDb (Internet Movie
Database) contains comprehensive auxiliary information such as
core members, duration, genre and budget of the movie, while
MovieLens-1M provides more than 1,000,000 user-item interactions
with rating scores {1, 2, 3, 4, 5}. Thus Movie domain KG can be
constructed by mapping movie titles of IMDb and MovieLens-1M.
To better fit our proposed model, all the interactions of which rat-
ing score equals 3 were omitted here for bi-classification and the
other 4 scores were normalized for top-K task. In processed KKBox
and IM-1M, about 50% of original interactions will be treated as
valid interactions (exact numbers are shown in Table 2). The other
part, which is used for completing KG, can measure the severity
of cold-start issue by Percentage of interactions used to complete
KG (PcKG for short). In terms of path data, we give our defini-
tion of KG at first: the schema graphs of music domain KG and
movid domain KG that we designed are illustrated in Figure 3. In
KKBox we select user, item(song) , language, artist and genre as
target entity types. Relation "CooperatesWith" is extracted by the
condition of "multiple artists in one song". In IM-1M, we choose
user, item(movie), director, actor and genre as target entity types.
Also, there are "actor_1_name" and "actor_2_name" attributes in
same movie, of which we regard as relation "Co-starsWith". Meta

https://www.kaggle.com/c/kkbox-music-recommendation-challenge
https://www.kaggle.com/suchitgupta60/imdb-data
https://grouplens.org/datasets/movielens/
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Figure 3: Schema graphs of KKBox (left) and IM-1M (right). In KKBox, U: user, I: item (song), L: language, Ar: artist, G: genre.
In IM-1M, U: user, I: item (movie), Ac: actor, D: director, G: genre.

paths can be extracted by certain traversal in schema graph, and
paths are extracted by Algorithm 1.

5.2 Experimental Settings
Evaluation Metrics
Aiming at evaluating our PeRN more comprehensively and demon-
strate its rationality, we use evaluation metrics from the perspec-
tives of binary classification recommendation task, top-K recom-
mendation task and ability to handle cold-start issue, which are
shown as below:

• Precision (P), recall (R), 𝐹1-score, mean squared error (MSE),
area under curve (AUC): This five metrics are adopt to rep-
resent an overall accuracy of bi-classfication task. Among
them, precision and recall are commonly used to solve the
imbalance of positive and negative samples. 𝐹1-score is the
harmonic mean of precision and recall. MSE is adopted here
to display the actual prediction error of the model. AUC,
of which the threshold we set is in range of 0.1 to 0.9, is
calculated as following equation:

AUC =

∑
𝑖∈𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑃 + 𝑁 + 1 − 𝑟𝑎𝑛𝑘𝑖 ) −

𝑃 (1+𝑃 )
2

𝑃 × 𝑁 (14)

where 𝑃 and 𝑁 are numbers of positive and negative inter-
actions, 𝑟𝑎𝑛𝑘𝑖 denotes the ranking of i’s predicted score.
• Normalized discounted cumulative gain (NDCG@K): As
the most common metrics in top-k recommendation task,
NDCG@K evaluates the model performance by position
influence, which is calculated as following:

NDCG@K =
1
𝛼
DCG@K =

1
𝛼

𝐾∑
𝑖=1

2𝑟𝑒𝑙𝑖 − 1
log2 (𝑖 + 1)

(15)

where 𝑟𝑒𝑙𝑖 indicates the relevance of the recommendation at
position i, K is the size of target list, 𝛼 is a standardization
constant that is the maximum value of DCG@K. Considering
sizes of these two datasets are different, we set K in KKBox
amd IM-1M as {3, 5, 10, 15} and {2, 6, 10, 12} separately.
• Percentage of interactions used to complete KG (PcKG): In
measuring cold-start cost, we set PcKG in range of {10%, 20%,
30%, 40%, 50%}. Here the lower PcKG with higher score of

other metrics indicates the higher ability in handling cold-
start issue.

Baselines
We compared our PeRN with the following widely-used recom-
mendation methods that are based on matrix factorization (MF),
factorization machine (FM), KG translation, meta path in hetero-
geneous information network (HIN) and path in KG. The brief
descriptions of these methods are as follows:

• MF [17]: This is a standard matrix factorization method with
Bayesian personalized ranking (BRP) loss by regarding inter-
actions as elements in user-item matrix to predict unknown
interaction.
• AFM [30]: The method is a factorization model combined
with attention mechanism which excavates potential rela-
tions and interactions among the user preferences and item
features.
• RippleNet [23]: The key of this method is preference propa-
gation which regards historical interests of users as a seed
set and propagates user preferences in KG which contains
extra information.
• MEIRec [7]: This is a meta-path-guided method which con-
tains rich user-item information and interactions based on
HIN and utilizes structural information fully for Intent Rec-
ommendation.
• KPRN [28]: KPRN is a representative method for integrating
path into KG recommendations by recurrent neural network.
Though KPRN achieves great performance in both binary
classification and top-K recommendation issue, it has a server
cold-start issue that its PcKG is up to 50%.

Parameter Settings
We omit any pre-trained parameters in our proposed model for
pair comparison with several baselines. To reasonably embed path
into a vector space, we map large fluctuated entity index to a 62
dimension vector and concatenate it with entity type index and
relation type index. So size of each input vector of LSTM is 64 and
with length up to 7 (i.e. 6-hops path). If the length of path is less
than 7, then complete it with zero vector. And batch size is 256
here. We adopt stochastic gradient descent (SGD) in optimization
step with the learning rate in range of {0.001, 0.01, 0.1, 0.5}, while



Conference’17, July 2017, Washington, DC, USA Yafan Huang, Feng Zhao, Shihui Song, Xiangyu Gui, Hai Jin

Table 3: Summary of performance on binary classification recommendation task between all baselines and our proposed PeRN
onKKBox and IM-1MdatasetS. Bolded numbers indicate the best result of each columns, and ‘*’ indicates the arithmetic square
root operation is performed on MSE for simplicity.

Dataset KKBox IM-1M

Metrics P R 𝐹1 MSE∗ AUC P R 𝐹1 MSE∗ AUC

MF 0.509 0.528 0.518 0.496 0.511 0.612 0.608 0.610 0.431 0.586
AFM 0.517 0.533 0.525 0.483 0.536 0.647 0.632 0.639 0.413 0.601

RippleNet 0.699 0.732 0.715 0.287 0.762 0.742 0.713 0.727 0.284 0.694
MEIRec 0.753 0.774 0.763 0.242 0.819 0.792 0.804 0.798 0.221 0.734
KPRN 0.805 0.822 0.813 0.206 0.834 0.843 0.826 0.834 0.172 0.812

PeRN 0.842 0.861 0.851 0.195 0.866 0.835 0.871 0.853 0.154 0.851

(a) KKBox NDCG@3 (b) KKBox NDCG@5 (c) KKBox NDCG@10 (d) KKBox NDCG@15

(e) IM-1M NDCG@2 (f) IM-1M NDCG@6 (g) IM-1M NDCG@10 (h) IM-1M NDCG@12

Figure 4: Performance of PeRN in top-K task and cold-start costs, measured by NDCG@{3, 5, 10, 15} in KKBox and NDCG@{2,
6, 10, 12} in IM-1M. ‘*’ here indicates the PcKG of KPRN is constantly 50%.

𝐿2 regularization coefficients are tuned between {10−5, 10−4, 10−3,
10−2}.

5.3 Performance Comparison
Table 2 and Figure 4 reports our experiment results on binary classi-
fication recommendation and the ability in solving cold-start issue
of top-K recommendation task respectively. In-depth experimental
analyses are as follows:
Bi-classification Task:

In binary classification recommendation issue, the main chal-
lenge is to achieve considerable performances on two user-item
interaction matrices. In KKBox, data density is only 0.0047%, which
is extremely sparse and renders various traditional recommendation

method unusable. MF and AFM are recommendation methods based
on matrix operations and have obtained ridiculous results when
processing highly sparse KKBox. RippleNet achieves significant
improvements than MF and AFM by integrating KG into user-item
interactions, but its predictive results are not so appreciable as
the path-based MEIRec and KPRN considering the high sparseness
when embedding KG. As for our proposed PeRN, substantially out-
performs the state-of-the-art methods and show best performance
in several binary classification recommendation evaluation metrics.
In IM-1M, as the data density is 1.87% here, PeRN and several base-
lines have achieved a slightly better results in P, R 𝐹1 and MSE. In
addition, original rating scores in IM-1M are displayed in range of
normalized {1, 2, 4, 5} rather than 1 for positive and 0 for negative,
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so the actual classification effects are not so excellent as expected,
which is shown by a lower AUC score than KKBox. Nonetheless,
our proposed PeRN still owns more promising results compared
with other baselines.
Top-K Task and Cold-start Costs:

As Figure 4 illustrates, our proposed PeRN also has a well perfor-
mance in alleviating cold-start issue in top-K recommendation task
compared with state-of-the-art path-based method KPRN. Here
KPRN utilizes 50% of given target user-item interactions in both IM-
1M and KKBox datasets in the process of constructing KG, which
causes a severe cold-start issue. To demonstrate the ability of PeRN
to handle cold-start issue in top-K task, we adopt PcKG (percentage
of interactions used to complete KG), which is shown as a percent-
age, to evaluate our model against baseline. Specifically, we use
PcKG = {10%, 20%, 30%, 40%, 50%} of interactions by each user in
original dataset , which aims to ensure all the users could be found
as an entity in KG, to complete music domain and movie domain
KG. Every new completion has to re-extract all the path in order
to confirm the accuracy of experiment. Measured by NDCG@K,
where K = {3, 5, 10, 15} in KKBox and K = {2, 6, 10, 12} in IM-1M
considering the size of paths is different within each datasets, our
PeRN is able to achieve much more encouraging performance. In
KKBox, with only 20%-30% PcKG can reach a higher accuracy in
top-K recommendation task than KPRN with 50% PcKG, while this
number normally decreases to 10%-20% in IM-1M. In other word,
we use only 30% prior knowledge on average and attain a better
prediction result in top-K recommendation task. Nevertheless, we
have to admit that these results are supposed to increase more with
a more thorough KG to be designed and established. We hold the
strong belief that reducing and refining prior knowledge is the key
to decrease cold-start costs.

5.4 Explainability Analysis
In terms of explainability, we randomly select a user-item inter-
action from IM-1M dataset and visualize its three paths, which is
shown as Figure 5, to illustrate model’s enhanced reasoning ability
in a real scene. The IDs of user and target item are 3408 and 318
respectively. Red numbers denote the weighting score of each path.
Some observations and analyses about “why user_3408 likes the
movie The ShawShank Redemption" are presented as below.

As Figure 5 shows, three different paths between (U_id: 3408,
I_id: 318) are clearly found, which can explain the question “why
user_3408 likes item_318" at a shallow level.

In order to mine more in-depth information from paths and
further differentiate the contribution of each path, we transform
these three paths to meta paths by abstracting entity to entity type:

• 𝑚𝑝1 = User
𝐿𝑖𝑘𝑒𝑠−−−−−→Item

𝐵𝑒𝑙𝑜𝑛𝑔𝑠𝑇𝑜
−−−−−−−−−→Genre

𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠−−−−−−−−→Item;

• 𝑚𝑝2 = User
𝐿𝑖𝑘𝑒𝑠−−−−−→Item

𝑆𝑡𝑎𝑟𝑟𝑒𝑑𝐵𝑦
−−−−−−−−−→Actor

𝑆𝑡𝑎𝑟𝑠𝐼𝑛−−−−−−−→Item;

• 𝑚𝑝3 = User
𝐿𝑖𝑘𝑒𝑠−−−−−→Item

𝑆𝑡𝑎𝑟𝑟𝑒𝑑𝐵𝑦
−−−−−−−−−→Actor

𝐶𝑜−𝑠𝑡𝑎𝑟𝑠𝑊 𝑖𝑡ℎ−−−−−−−−−−−−−→
Actor

𝑆𝑡𝑎𝑟𝑠𝐼𝑛−−−−−−−→Item;

Evidently, these meta paths account for different user habits in
movie recommendation field.𝑚𝑝1 indicates that user tend to show
more interests to movies with the same genre.𝑚𝑝2 tells us that user
may like the movies acted by the same actor. More interestingly, we
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Figure 5: Visualization of paths between selected user-item
interaction.

also can get a conclusion that user_3408 may be a fan of Morgan
Freeman by simple analysis of𝑚𝑝2. Besides,𝑚𝑝3 reveals that user
might have some interests in the cooperation between two famous
actors. Such correlations between entity types assist us acquire a
more precise user preference.

After an overall statistical analysis by entropy encoder and a
learning process of our model, the weighting scores of three paths
are shown in Figure 5. Specifically, score of𝑚𝑝1 is a bit higher than
𝑚𝑝2, while score of𝑚𝑝3 is much lower than the other two. These
results unambiguously explain that the events “user likes the movie
by same actor" and "user likes themovie of the same genre" are more
common in movie recommendation. Also, the low weight of 𝑤3
demonstrates that the behaviour “User Likes Item StarredBy Actor
Co-starsWith Actor StarsIn Item" is pretty bizarre compared with
the other two, which is consistent with our behavioral cognition in
real life.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose a path-enhanced recurrent network (PeRN),
which shows high performance in dealing with cold-start issues
and enhances the explanation of KG recommendation. We innova-
tively exploit information frommeta path to compensate for general
path-based methods and introduce a bidirectional path extraction
algorithm, since path extraction is time-consuming. Extensive ex-
periments show the well-developed explanation and effectiveness
of our method.

In future, we hope to further continue our work from following
research directions: (1) We hope to improve current network model
to boost its memory ability. In processing serialized data, such as
path and meta path in our PeRN, the memory ability of model is just
as crucial as its learning ability, which is always the most critical
part in judging the quality of a model. Current researchers have
paid too much attention to the RNN-based model, such as LSTM
or GRU. We think memory network, such as key-value memory
network, can also achieve amazing results and hope to leverage
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it in better memorizing path information in KG. (2) We hope to
extract more information from path. Although we analyze the rela-
tionship between different paths by using entropy-based encoder in
PeRN, we do think there are more interesting correlations between
different path, such as triangular relationships, multiple relation-
ships or relational reasoning in paths. We will mine more from
this perspective to improve the utilization of path information and
better excavate user preferences in KG recommendation. (3) In the
past two years, researches and applications based on graph neural
network (GNN), such as RecoGCN [31] and GSN [10], have been
becoming a new focus. We plan to propose new GNN-based method
for explainable recommendation with KG.
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